版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年河北省衡水市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)y=2x,則dy=A.A.x2x-1dx
B.2xdx
C.(2x/ln2)dx
D.2xln2dx
2.
3.
4.
5.A.A.∞B.1C.0D.-16.當(dāng)x→0時,3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價無窮小D.等價無窮小
7.點(-1,-2,-5)關(guān)于yOz平面的對稱點是()
A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)
8.
9.
10.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
11.
12.A.e2
B.e-2
C.1D.0
13.
A.
B.
C.
D.
14.
15.
16.A.A.2
B.
C.1
D.-2
17.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
18.曲線y=ex與其過原點的切線及y軸所圍面積為
A.
B.
C.
D.
19.
20.
二、填空題(20題)21.
22.
23.24.微分方程exy'=1的通解為______.25.26.
27.
28.
29.
30.
31.
32.33.
34.
35.∫(x2-1)dx=________。36.設(shè)y=3+cosx,則y=.37.38.
39.
40.三、計算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.42.求曲線在點(1,3)處的切線方程.43.
44.
45.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則46.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
48.求微分方程y"-4y'+4y=e-2x的通解.
49.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
50.證明:
51.
52.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.55.將f(x)=e-2X展開為x的冪級數(shù).56.57.求微分方程的通解.58.
59.60.
四、解答題(10題)61.給定曲線y=x3與直線y=px-q(其中p>0),求p與q為何關(guān)系時,直線y=px-q是y=x3的切線.
62.
63.
64.
65.
66.67.68.將展開為x的冪級數(shù).
69.
70.求曲線y=x2+1在點(1,2)處的切線方程.并求該曲線與所求切線及x=0所圍成的平面圖形的面積.五、高等數(shù)學(xué)(0題)71.求df(x)。六、解答題(0題)72.若y=y(x)由方程y=x2+y2,求dy。
參考答案
1.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。
2.A解析:
3.C
4.B
5.C本題考查的知識點為導(dǎo)數(shù)的幾何意義.
6.D本題考查的知識點為無窮小階的比較。
由于,可知點x→0時3x2+2x3與3x2為等價無窮小,故應(yīng)選D。
7.D關(guān)于yOz平面對稱的兩點的橫坐標(biāo)互為相反數(shù),故選D。
8.B
9.D
10.A本題考查的知識點為無窮級數(shù)的收斂性。
11.A
12.A
13.C本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
14.C
15.C
16.C本題考查的知識點為函數(shù)連續(xù)性的概念.
17.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
18.A
19.D解析:
20.D
21.
22.1/61/6解析:
23.9024.y=-e-x+C本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
由于方程為exy'=1,先變形為
變量分離dy=e-xdx.
兩端積分
為所求通解.
25.
本題考查的知識點為微分的四則運算.
注意若u,v可微,則
26.
27.
28.
29.
30.x=-3x=-3解析:
31.
32.
33.
34.ln|x-1|+c
35.36.-sinX.
本題考查的知識點為導(dǎo)數(shù)運算.
37.1/2本題考查了對∞-∞型未定式極限的知識點,38.
39.0
40.41.由二重積分物理意義知
42.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.
44.
45.由等價無窮小量的定義可知
46.
47.
列表:
說明
48.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
50.
51.
52.
53.函數(shù)的定義域為
注意
54.
55.
56.
57.
58.
則
59.
60.由一階線性微分方程通解公式有
61.
62.本題考查的知識點為兩個:極限的運算;極限值是個確定的數(shù)值.
63.由于
64.
65.解所給問題為參數(shù)方程求導(dǎo)問題.由于
66.
67.
68.
;本題考查的知識點為將初等函數(shù)展開為x的冪級數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個標(biāo)準(zhǔn)展開式:,ex,sinx,cosx,ln(1+x)對于x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 類風(fēng)濕關(guān)節(jié)炎慢病管理
- 新生兒糖尿病的護(hù)理課件
- 高三化學(xué)一輪復(fù)習(xí) 第五章 《化工生產(chǎn)中的重要非金屬元素》 專題講解 氣體的制備、凈化和收集 課件
- 巧用繩課件教學(xué)課件
- 2-1-3 碳酸鈉與碳酸氫鈉 課件 高一上學(xué)期化學(xué)人教版(2019)必修第一冊
- 吉林省2024七年級數(shù)學(xué)上冊第1章有理數(shù)階段綜合訓(xùn)練范圍1.6~1.8課件新版華東師大版
- 低壓裝表接電安全
- 報任安書公開課教案
- 家居建材客服合同范本
- 幼兒園衛(wèi)生清潔工勞動合同
- 中學(xué)化學(xué)實驗室管理制度
- 2023年05月北京科技大學(xué)人才招聘(第二批)筆試歷年高頻考點試題含答案附詳解
- 信息技術(shù)應(yīng)用于高三化學(xué)復(fù)習(xí)課教學(xué)的研究的開題報告
- 國開《人文英語1》單元自測unit1-8習(xí)題答案整理合集
- 2023上海高三高考英語模擬試卷20套(含答案)
- 羅大佑的歌詞集
- 世界經(jīng)濟(jì)形勢與政策論文2000字三篇
- 康復(fù)護(hù)理學(xué)綜述
- QC成果提高鋼結(jié)構(gòu)屋面防水施工合格率匯報圖文結(jié)合
- 植物種群及其基本特征
- 藥物性肝損傷指南
評論
0/150
提交評論