2023年湖北省黃岡市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2023年湖北省黃岡市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2023年湖北省黃岡市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2023年湖北省黃岡市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2023年湖北省黃岡市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年湖北省黃岡市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.A.

B.

C.

D.

2.A.A.

B.

C.

D.

3.()。A.

B.

C.

D.

4.

5.

A.1

B.

C.0

D.

6.

7.下列關(guān)系正確的是()。A.

B.

C.

D.

8.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無(wú)水平漸近線,又無(wú)鉛直漸近線

9.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)

10.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

11.

12.A.A.

B.B.

C.C.

D.D.

13.()A.A.

B.

C.

D.

14.()A.A.1/2B.1C.2D.e

15.

16.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

17.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

18.

19.

20.

21.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散

22.

23.下列函數(shù)在指定區(qū)間上滿(mǎn)足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

24.A.A.

B.e

C.e2

D.1

25.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

26.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

27.

28.

29.為二次積分為()。A.

B.

C.

D.

30.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

31.

32.

33.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

34.

()A.x2

B.2x2

C.xD.2x

35.

36.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C37.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

38.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。

A.公式中,△j為沖擊無(wú)以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移

B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷

C.當(dāng)時(shí),可近似取

D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)

39.

40.

41.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*

B.y=C1e-x+C2e3x

C.y=C1xe-x+C2e3x+y*

D.y=C1ex+C2e-3x+y*

42.A.3B.2C.1D.1/2

43.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().

A.

B.x2

C.2x

D.2

44.則f(x)間斷點(diǎn)是x=()。A.2B.1C.0D.-1

45.在初始發(fā)展階段,國(guó)際化經(jīng)營(yíng)的主要方式是()

A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國(guó)投資

46.

47.

48.

49.

50.

二、填空題(20題)51.y″+5y′=0的特征方程為——.52.若=-2,則a=________。53.54.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為_(kāi)_____.

55.二階常系數(shù)齊次線性方程y"=0的通解為_(kāi)_________。

56.

57.

58.

59.

60.

61.62.

63.

64.

65.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。66.67.設(shè)z=2x+y2,則dz=______。68.69.方程cosxsinydx+sinxcosydy=0的通解為_(kāi)__________.70.y'=x的通解為_(kāi)_____.三、計(jì)算題(20題)71.

72.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

73.

74.

75.求微分方程y"-4y'+4y=e-2x的通解.

76.證明:77.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.78.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.79.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

80.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

81.求曲線在點(diǎn)(1,3)處的切線方程.82.83.求微分方程的通解.84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.

86.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

87.

88.89.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則90.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).四、解答題(10題)91.

92.93.設(shè)平面薄片的方程可以表示為x2+y2≤R2,x≥0,薄片上點(diǎn)(x,y)處的密度,求該薄片的質(zhì)量M.

94.

95.求微分方程y"-y'-2y=ex的通解。

96.求∫sinxdx.

97.

98.

99.

100.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.五、高等數(shù)學(xué)(0題)101.已知同上題若產(chǎn)品以每件500元出售,問(wèn):要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件?

六、解答題(0題)102.

參考答案

1.D

2.B

3.C由不定積分基本公式可知

4.B

5.B

6.C

7.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。

8.A

9.A

10.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

11.C

12.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)

13.C

14.C

15.D

16.C所給方程為可分離變量方程.

17.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性.

由定積分的對(duì)稱(chēng)性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

18.C

19.C

20.B

21.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

22.D解析:

23.C

24.C本題考查的知識(shí)點(diǎn)為重要極限公式.

25.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。

26.B

27.D

28.C

29.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

30.D

31.D

32.A

33.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

34.A

35.B

36.C

37.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

38.D

39.D

40.A

41.A考慮對(duì)應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.

42.B,可知應(yīng)選B。

43.D解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于x2為f(x)的原函數(shù),因此

f(x)=(x2)'=2x,

因此

f'(x)=2.

可知應(yīng)選D.

44.Df(x)為分式,當(dāng)X=-l時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)x=-1為f(x)的間斷點(diǎn),故選D。

45.B解析:在初始投資階段,企業(yè)從事國(guó)際化經(jīng)營(yíng)活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。

46.A

47.D

48.A

49.B

50.D51.由特征方程的定義可知,所給方程的特征方程為52.因?yàn)?a,所以a=-2。

53.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。54.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.

通常求解的思路為:

先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.

比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).

由y=x3-2x+1,可得

Y'=3x2-2.

令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有

Y'=3x2-2>0.

可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.

注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.

本題中常見(jiàn)的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較

從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.

55.y=C1+C2x。

56.

57.22解析:

58.3x2siny3x2siny解析:

59.

60.

61.解析:

62.

63.

64.

65.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx66.x—arctanx+C.

本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.

67.2dx+2ydy

68.

69.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識(shí)點(diǎn).

由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

70.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.

由于y'=x,可知

71.

72.

73.

74.

75.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

76.

77.函數(shù)的定義域?yàn)?/p>

注意

78.由二重積分物理意義知

79.

80.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%81.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

82.

83.

84.

85.由一階線性微分方程通解公式有

86.

87.

88.

89.由等價(jià)無(wú)窮小量的定義可知

90.

列表:

說(shuō)明

91.

92.解

93.本題考查的知識(shí)點(diǎn)為二重積分的物理應(yīng)用.

若已知平面物質(zhì)薄片D,其密度為f(x,y),則所給平面薄片的質(zhì)量m可以由

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論