2021-2022學年廣東省揭陽市榕城區(qū)揭陽三中高三(最后沖刺)數學試卷含解析_第1頁
2021-2022學年廣東省揭陽市榕城區(qū)揭陽三中高三(最后沖刺)數學試卷含解析_第2頁
2021-2022學年廣東省揭陽市榕城區(qū)揭陽三中高三(最后沖刺)數學試卷含解析_第3頁
2021-2022學年廣東省揭陽市榕城區(qū)揭陽三中高三(最后沖刺)數學試卷含解析_第4頁
2021-2022學年廣東省揭陽市榕城區(qū)揭陽三中高三(最后沖刺)數學試卷含解析_第5頁
免費預覽已結束,剩余11頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的左右焦點為,一條漸近線方程為,過點且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.22.若時,,則的取值范圍為()A. B. C. D.3.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙4.已知集合,,則A. B.C. D.5.是定義在上的增函數,且滿足:的導函數存在,且,則下列不等式成立的是()A. B.C. D.6.已知,,則等于().A. B. C. D.7.一只螞蟻在邊長為的正三角形區(qū)域內隨機爬行,則在離三個頂點距離都大于的區(qū)域內的概率為()A. B. C. D.8.已知為定義在上的奇函數,且滿足當時,,則()A. B. C. D.9.下圖所示函數圖象經過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.211.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.12.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸的概率是______.14.函數在的零點個數為________.15.已知,,且,則的最小值是______.16.若函數(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.18.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.19.(12分)已知等差數列an,和等比數列b(I)求數列{an}(II)求數列n2an?a20.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.21.(12分)已知函數,.(1)當時,求不等式的解集;(2)若函數的圖象與軸恰好圍成一個直角三角形,求的值.22.(10分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

設,直線的方程為,聯(lián)立方程得到,,根據向量關系化簡到,得到離心率.【詳解】設,直線的方程為.聯(lián)立整理得,則.因為,所以為線段的中點,所以,,整理得,故該雙曲線的離心率.故選:.【點睛】本題考查了雙曲線的離心率,意在考查學生的計算能力和轉化能力.2.D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.3.A【解析】

利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.4.D【解析】

因為,,所以,,故選D.5.D【解析】

根據是定義在上的增函數及有意義可得,構建新函數,利用導數可得為上的增函數,從而可得正確的選項.【詳解】因為是定義在上的增函數,故.又有意義,故,故,所以.令,則,故在上為增函數,所以即,整理得到.故選:D.【點睛】本題考查導數在函數單調性中的應用,一般地,數的大小比較,可根據數的特點和題設中給出的原函數與導數的關系構建新函數,本題屬于中檔題.6.B【解析】

由已知條件利用誘導公式得,再利用三角函數的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結合解得,所以,故選B.【點睛】本題考查三角函數的誘導公式、同角三角函數的平方關系以及三角函數的符號與位置關系,屬于基礎題.7.A【解析】

求出滿足條件的正的面積,再求出滿足條件的正內的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.8.C【解析】

由題設條件,可得函數的周期是,再結合函數是奇函數的性質將轉化為函數值,即可得到結論.【詳解】由題意,,則函數的周期是,所以,,又函數為上的奇函數,且當時,,所以,.故選:C.【點睛】本題考查函數的周期性,由題設得函數的周期是解答本題的關鍵,屬于基礎題.9.D【解析】

根據函數圖像得到函數的一個解析式為,再根據平移法則得到答案.【詳解】設函數解析式為,根據圖像:,,故,即,,,取,得到,函數向右平移個單位得到.故選:.【點睛】本題考查了根據函數圖像求函數解析式,三角函數平移,意在考查學生對于三角函數知識的綜合應用.10.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.11.B【解析】

利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.12.C【解析】

由正項等比數列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數列基本量的求法,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

用樹狀圖法列舉出所有情況,得出甲不輸的結果數,再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.14.【解析】

求出的范圍,再由函數值為零,得到的取值可得零點個數.【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數的性質和函數的零點,屬于基礎題.15.8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.【點睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎題.16.(1,)【解析】

在定義域[m,n]上的值域是[m2,n2],等價轉化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導數的幾何意義,把已知條件進行等價轉化是求解的關鍵,側重考查數學抽象的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)最大值.【解析】

(1)根據通徑和即可求(2)設直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當且僅當,即時取得等號,即四邊形面積的最大值.【點睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.18.(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】

(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數只有一個零點,原方程只有一個解,當且遞增區(qū)間時,遞減區(qū)間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.19.(I)an=2n-1,bn=【解析】

(I)直接利用等差數列,等比數列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數列,等比數列,裂項求和,意在考查學生對于數列公式方法的綜合應用.20.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.21.(1)(2)【解析】

(1)當時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數的圖象與軸恰好圍成一個直角三角形,所以,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論