版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省深圳市文匯中學(xué)2014-2015學(xué)年七年級上學(xué)期期中數(shù)學(xué)試卷一、選擇題:(每小題3分,共36分)1.(3分)下列正確的有() A. (﹣8)+(﹣15)=7 B. (﹣3)÷(﹣6)=2 C. 2﹣2×(﹣8)=0 D. |﹣6|+7=132.(3分)下列說法錯誤的是() A. 數(shù)軸上的點表示的數(shù),右邊的總比左邊的數(shù)大 B. |a|不可能是負(fù)數(shù) C. ﹣的倒數(shù)是5 D. 380000000用科學(xué)記數(shù)法表示3.8×1083.(3分)下列正確的有() A. 3x+3y=6xy B. 7x﹣5x=2 C. ﹣(a﹣b)=﹣a+b D. ﹣(a+b)=﹣a+b[來源:學(xué)科網(wǎng)]4.(3分)在數(shù)軸上離﹣2的距離等于3的點表示的數(shù)是() A. 3 B. 0或1 C. 1或﹣5 D. 3或05.(3分)下列兩項中,屬于同類項的是() A. 62與x2 B. 4ab與4abc C. 0.2x2y與0.2xy2 D. nm和﹣mn6.(3分)若x2=4,|y|=1,且x>y,則x+y的值為() A. 5 B. ±3 C. 3或1 D. ﹣3或﹣17.(3分)若|x﹣1|+(y+2)2=0,則x﹣y的值為() A. 3 B. ﹣1 C. 1 D. 28.(3分)一種水泥袋標(biāo)識為“50±0.5千克”,則下列水泥中合格的有() A. 49.40千克 B. 50.52千克 C. 50.57千克 D. 49.83千克9.(3分)如圖所示,不可能圍成正方體的是() A. B. C. D. 10.(3分)在如下的一些數(shù)中:﹣3,3.14,﹣20,6.8,﹣,|﹣9|,﹣32中是負(fù)整數(shù)的個數(shù)為() A. 1個 B. 2個 C. 3個 D. 4個11.(3分)對于有理數(shù)a、b,如果ab<0,a+b>0.則下列各式成立的是() A. a<0,b<0 B. a>0,b<0且|b|<a C. a<0,b>0且|a|<|b| D. a>0,b<0且|b|>a12.(3分)有理數(shù)a、b在數(shù)軸上的位置如圖所示,則化簡|a﹣b|+|a+b|的結(jié)果為() A. ﹣2a B. 2b C. 2a D. ﹣2b二、填空(每小題3分,共12分)13.(3分)如果水位下降3m記作﹣3m,那么水位上升4m記做:.14.(3分)若a、b互為相反數(shù),m、n互為倒數(shù),則3(a+b)﹣mn=.15.(3分)某工廠上月產(chǎn)量為a噸,本月的產(chǎn)量比上月增加了10%,則本月產(chǎn)量是噸.16.(3分)下列每個圖案都是若干個棋子圍成的正方形圖案,圖案的每條邊(包括兩個頂點)上都有n個棋子,每個圖案的棋子總數(shù)為下圖的排列規(guī)律推斷s與n之間的關(guān)系可以用式子S=來表示.三、解答題17.(4分)補充完成下列數(shù)軸,如圖所示在數(shù)軸上用點表示:0,﹣(﹣3),﹣2,|﹣2.5|,(﹣2)2并用“<”號連接這些數(shù).18.(6分)畫出下面這個幾何體(前后只有兩排)的三種視圖.四、化簡(每小題4分,共16分)19.(4分)(﹣)+10﹣(﹣)20.(4分)(﹣﹣+)×(﹣48)[來源:學(xué)§科§網(wǎng)Z§X§X§K]21.(4分)﹣|2﹣5|+16×(﹣)﹣(﹣15)÷5.22.(4分)﹣32+(﹣2)3×5﹣28÷(﹣2)2.五、化簡:(每小題4分,共8分)23.(4分)7x﹣2y2+8+y2﹣5x.24.(4分)(﹣4b2+3a2)﹣(a2﹣2b2)﹣2(b2+a2)25.(6分)先化簡,后求值:(9ab+6b2)﹣3(ab﹣b2)﹣1,其中a=﹣1,b=.六、解答題(每題6分,共12分)26.(6分)某交通警察駕駛摩托車在一條東西走向的公路上要巡邏,從A地出發(fā),向東走的記為正,向西走的記為負(fù),每10分鐘的巡邏情況記錄如下:時間 10 20 30 40 50 60 70 80 90 100 120路程(km) +10 +5 +2 +7 ﹣3 ﹣4 ﹣10 ﹣12 ﹣6 +8 ﹣7(1)2小時后他停下休息,此時他在A地的什么方向?離A地多遠(yuǎn)?(2)這2小時他共巡邏了多少km?27.(6分)小明房間的窗戶如圖所示,是長為b米,寬為a米的長方形.其中上方的裝飾物由兩個四分之一圓和一個半圓組成(它們的半徑相同).(1)用代數(shù)表示窗戶中能射進(jìn)陽光的部分的面積是多少?(窗框面積忽略不計,保留π)(2)若a=3米,b=米時,求窗戶中能射進(jìn)陽光的部分的面積是多少?(保留π)廣東省深圳市文匯中學(xué)2014-2015學(xué)年七年級上學(xué)期期中數(shù)學(xué)試卷參考答案與試題解析一、選擇題:(每小題3分,共36分)1.(3分)下列正確的有() A. (﹣8)+(﹣15)=7 B. (﹣3)÷(﹣6)=2 C. 2﹣2×(﹣8)=0 D. |﹣6|+7=13考點: 有理數(shù)的混合運算.分析: 按照有理數(shù)四則計算方法、有理數(shù)混合運算的順序以及絕對值的意義逐一計算得出答案,進(jìn)一步比較選擇答案即可.解答: 解:A、(﹣8)+(﹣15)=﹣23,原題計算錯誤;B、(﹣3)÷(﹣6)=,原題計算錯誤;C、2﹣2×(﹣8)=2+16=18,原題計算錯誤;D、|﹣6|+7=6+7=13,原題計算正確.故選:D.點評: 此題考查有理數(shù)的混合運算,正確判定運算順序和運算符號是關(guān)鍵.2.(3分)下列說法錯誤的是() A. 數(shù)軸上的點表示的數(shù),右邊的總比左邊的數(shù)大 B. |a|不可能是負(fù)數(shù)[來源:學(xué).科.網(wǎng)] C. ﹣的倒數(shù)是5 D. 380000000用科學(xué)記數(shù)法表示3.8×108考點: 數(shù)軸;絕對值;倒數(shù);科學(xué)記數(shù)法—表示較大的數(shù).分析: 根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,可判斷A;根據(jù)絕對值的性質(zhì),可判斷B;根據(jù)倒數(shù)的定義,可判斷C;根據(jù)科學(xué)記數(shù)法的表示方法,可判斷D.解答: 解:A、數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,故A說法正確;B、非負(fù)數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù),故B說法正確;C、﹣的倒數(shù)是﹣5,故C說法錯誤;D、380000000用科學(xué)記數(shù)法表示3.8×108,故D說法正確;故選:C.點評: 本題考查了絕對值,利用了絕對值的性質(zhì):非負(fù)數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù).3.(3分)下列正確的有() A. 3x+3y=6xy B. 7x﹣5x=2 C. ﹣(a﹣b)=﹣a+b D. ﹣(a+b)=﹣a+b考點: 合并同類項;去括號與添括號.分析: 合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;括號前是“﹣”號,去括號時連同它前面的“﹣”號一起去掉,括號內(nèi)各項都要變號.解答: 解:A、3x與3y不是同類項,不能合并,故本選項錯誤;B、7x﹣5x=(7﹣5)x=2x,故本選項錯誤;C、﹣(a﹣b)=﹣a+b,故本選項正確;D、﹣(a+b)=﹣a﹣b,故本選項錯誤;故選:C.點評: 本題主要考查了合并同類項,去括號與添括號,熟練掌握運算法則是解題的關(guān)鍵.4.(3分)在數(shù)軸上離﹣2的距離等于3的點表示的數(shù)是() A. 3 B. 0或1 C. 1或﹣5 D. 3或0考點: 數(shù)軸.分析: 根據(jù)數(shù)軸上到一點距離相等的點有兩個,分別位于該點的左右,可得答案.解答: 解:在數(shù)軸上離﹣2的距離等于3的點表示的數(shù)是﹣2﹣3=﹣5或﹣2+3=1,故選:C.點評: 本題考查了數(shù)軸,利用了數(shù)軸上兩點間的距離.5.(3分)下列兩項中,屬于同類項的是() A. 62與x2 B. 4ab與4abc C. 0.2x2y與0.2xy2 D. nm和﹣mn考點: 同類項.分析: 同類項的概念是所含字母相同,相同字母的指數(shù)也相同的項是同類項.并且與字母的順序無關(guān).解答: 解:A、62與x2字母不同不是同類項;B、4ab與4abc字母不同不是同類項;C、0.2x2y與0.2xy2字母的指數(shù)不同不是同類項;D、nm和﹣mn是同類項.故選D.點評: 同類項定義中的兩個“相同”:(1)所含字母相同;(2)相同字母的指數(shù)相同,是易混點,還有注意同類項與字母的順序無關(guān).6.(3分)若x2=4,|y|=1,且x>y,則x+y的值為() A. 5 B. ±3 C. 3或1 D. ﹣3或﹣1考點: 有理數(shù)的加法;絕對值;有理數(shù)的乘方.專題: 計算題.分析: 利用平方根的定義,以及絕對值的代數(shù)意義,由題意求出x與y的值,即可求出x+y的值.解答: 解:∵x2=4,|y|=1,且x>y,∴x=2,y=1;x=2,y=﹣1,則x+y=3或1.故選C.點評: 此題考查了有理數(shù)的加法,熟練掌握加法法則是解本題的關(guān)鍵.7.(3分)若|x﹣1|+(y+2)2=0,則x﹣y的值為() A. 3 B. ﹣1 C. 1 D. 2考點: 非負(fù)數(shù)的性質(zhì):偶次方;非負(fù)數(shù)的性質(zhì):絕對值.分析: 先根據(jù)非負(fù)數(shù)的性質(zhì)求出x,y的值,進(jìn)而可得出結(jié)論.解答: 解:∵|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,解得x=1,y=﹣2,∴x﹣y=1+2=3.故選A.點評: 本題考查的是非負(fù)數(shù)的性質(zhì),熟知任何數(shù)的絕對值及偶次方均為非負(fù)數(shù)是解答此題的關(guān)鍵.8.(3分)一種水泥袋標(biāo)識為“50±0.5千克”,則下列水泥中合格的有() A. 49.40千克 B. 50.52千克 C. 50.57千克 D. 49.83千克考點: 正數(shù)和負(fù)數(shù).分析: 先根據(jù)水泥的質(zhì)量標(biāo)識,計算出合格水泥的質(zhì)量的取值范圍,然后再進(jìn)行判斷.解答: 解:由題意知:合格水泥的質(zhì)量應(yīng)該在(50﹣0.5)千克到(50+0.5)千克之間;即49.5千克至50.5千克之間,符合要求的是D選項.故選D.點評: 此題考查了正數(shù)和負(fù)數(shù),解題的關(guān)鍵是弄清合格大米的質(zhì)量范圍.9.(3分)如圖所示,不可能圍成正方體的是() A. B. C. D. 考點: 展開圖折疊成幾何體.分析: 利用正方體及其表面展開圖的特點解題.解答: 解:A、B、D、可折成正方體.C、是“凹”字格,不能折成正方體;故選:C.點評: 本題考查展開圖折疊成幾何體的知識,注意掌握只要有“田”“凹”字格的展開圖都不是正方體的表面展開圖.10.(3分)在如下的一些數(shù)中:﹣3,3.14,﹣20,6.8,﹣,|﹣9|,﹣32中是負(fù)整數(shù)的個數(shù)為() A. 1個 B. 2個 C. 3個 D. 4個[來源:學(xué)科網(wǎng)ZXXK]考點: 有理數(shù).分析: 根據(jù)小于零的整數(shù)是負(fù)整數(shù),可得負(fù)整數(shù)集合.解答: 解:﹣3,﹣20,﹣32是負(fù)整數(shù),故選:C.點評: 本題考查了有理數(shù),小于零的數(shù)是負(fù)整數(shù).11.(3分)對于有理數(shù)a、b,如果ab<0,a+b>0.則下列各式成立的是() A. a<0,b<0 B. a>0,b<0且|b|<a C. a<0,b>0且|a|<|b| D. a>0,b<0且|b|>a考點: 有理數(shù)的乘法;有理數(shù)的加法.分析: 根據(jù)異號得負(fù)判斷出a、b異號,再根據(jù)有理數(shù)的加法運算法則判斷即可.[來源:學(xué)科網(wǎng)ZXXK]解答: 解:∵ab<0,∴a、b異號,∵a+b>0,∴a>0,b<0且|b|<a.故選B.點評: 本題考查了有理數(shù)的乘法,有理數(shù)的加法,熟記運算法則是解題的關(guān)鍵.12.(3分)有理數(shù)a、b在數(shù)軸上的位置如圖所示,則化簡|a﹣b|+|a+b|的結(jié)果為() A. ﹣2a B. 2b C. 2a D. ﹣2b考點: 整式的加減;數(shù)軸;絕對值.分析: 根據(jù)數(shù)軸上點的位置判斷絕對值里邊式子的正負(fù),利用絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.[來源:學(xué)科網(wǎng)]解答: 解:根據(jù)數(shù)軸上點的位置得:a<0<b,且|a|<|b|,∴a﹣b<0,a+b>0,則原式=b﹣a+a+b=2b.故選B[來源:學(xué)科網(wǎng)]點評: 此題考查了整式的加減,熟練掌握運算法則是解本題的關(guān)鍵.二、填空(每小題3分,共12分)13.(3分)如果水位下降3m記作﹣3m,那么水位上升4m記做:+4m.考點: 正數(shù)和負(fù)數(shù).分析: 根據(jù)正數(shù)和負(fù)數(shù)表示相反意義的量,下降記為負(fù),可得上升的表示方法.解答: 解;如果水位下降3m記作﹣3m,那么水位上升4m記作+4m,故答案為:+4m.點評: 本題考查了正數(shù)和負(fù)數(shù),相反意義的量用正數(shù)和負(fù)數(shù)表示.14.(3分)若a、b互為相反數(shù),m、n互為倒數(shù),則3(a+b)﹣mn=﹣1.考點: 代數(shù)式求值;相反數(shù);倒數(shù).專題: 計算題.[來源:Z*xx*k.Com]分析: 利用相反數(shù),倒數(shù)的定義得到a+b=0,mn=1,代入原式計算即可得到結(jié)果.解答: 解:根據(jù)題意得:a+b=0,mn=1,則原式=0﹣1=﹣1,故答案為:﹣1點評: 此題考查了代數(shù)式求值,相反數(shù),以及倒數(shù),熟練掌握運算法則是解本題的關(guān)鍵.15.(3分)某工廠上月產(chǎn)量為a噸,本月的產(chǎn)量比上月增加了10%,則本月產(chǎn)量是1.10a噸.考點: 列代數(shù)式.分析: 根據(jù)題意可得本月的產(chǎn)量=上月的產(chǎn)量+增長的產(chǎn)量=(1+增長率)×上月的產(chǎn)量可得答案.解答: 解:由題意得:(1+10%)a=1.10a,故答案為:1.10a.點評: 此題主要考查了列代數(shù)式,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出代數(shù)式.16.(3分)下列每個圖案都是若干個棋子圍成的正方形圖案,圖案的每條邊(包括兩個頂點)上都有n個棋子,每個圖案的棋子總數(shù)為下圖的排列規(guī)律推斷s與n之間的關(guān)系可以用式子S=4n﹣4來表示.考點: 規(guī)律型:圖形的變化類.專題: 規(guī)律型.分析: 通過觀察已知圖形,可以得到前三個圖形中棋子的個數(shù)分別為:4,8,12,可知后一個圖形中棋子的個數(shù)比前一個圖形中棋子的個數(shù)多4個.即可得到規(guī)律為:圖案的每條邊(包括兩個頂點)上都有n個棋子,每個圖案的棋子總數(shù)為4n﹣4.解答: 解:根據(jù)所擺放的圖形,可以根據(jù)周長的方法進(jìn)行計算:第一個圖中,每條邊上是2個,總數(shù)是2×4﹣4=4×1.第二個圖中,每條邊上是3個,總數(shù)是3×4﹣4=4×2.第三個圖中,每條邊上是4個,總數(shù)是4×4﹣4=4×3.依此類推:當(dāng)每條邊上是n個時,則總數(shù)是S=4(n﹣1)=4n﹣4.點評: 此題屬于規(guī)律性題目.解題時注意:按周長的方法計算的時候,四個頂點正好重復(fù)了一次.三、解答題17.(4分)補充完成下列數(shù)軸,如圖所示在數(shù)軸上用點表示:0,﹣(﹣3),﹣2,|﹣2.5|,(﹣2)2并用“<”號連接這些數(shù).考點: 有理數(shù)大小比較;數(shù)軸.分析: 先畫出數(shù)軸,在數(shù)軸上表示出各數(shù),再從左到右用“<”連接起來即可.解答: 解:如圖所示,故﹣2<0<|﹣2.5|<﹣(﹣3)<(﹣2)2.點評: 本題考查的是數(shù)軸,熟知數(shù)軸上右邊的數(shù)總比左邊的大的特點是解答此題的關(guān)鍵.18.(6分)畫出下面這個幾何體(前后只有兩排)的三種視圖.考點: 作圖-三視圖.分析: 主視圖是從正面看所得到的圖形;左視圖是從左面看所得到的圖形;俯視圖是從上面看所得到的圖形.解答: 解:如圖所示:.點評: 此題主要考查了畫三視圖,關(guān)鍵是掌握三視圖所看的位置.四、化簡(每小題4分,共16分)19.(4分)(﹣)+10﹣(﹣)考點: 有理數(shù)的加減混合運算.專題: 計算題.分析: 原式利用減法法則變形,計算即可得到結(jié)果.解答: 解:原式=﹣++10=1+10=11.點評: 此題考查了有理數(shù)的加減混合運算,熟練掌握運算法則是解本題的關(guān)鍵.20.(4分)(﹣﹣+)×(﹣48)考點: 有理數(shù)的乘法.分析: 利用乘法分配律進(jìn)行計算即可得解.解答: 解:(﹣﹣+)×(﹣48),=×(﹣48)﹣×(﹣48)﹣×(﹣48)+×(﹣48),=﹣32+12+18﹣10,=30﹣42,=﹣12.點評: 本題考查了有理數(shù)的乘法,利用運算定律可以使計算更加簡便.21.(4分)﹣|2﹣5|+16×(﹣)﹣(﹣15)÷5.考點: 有理數(shù)的混合運算.專題: 計算題.分析: 原式先計算乘除運算,再計算加減運算即可得到結(jié)果.解答: 解:原式=﹣3﹣8+3=﹣8.點評: 此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.22.(4分)﹣32+(﹣2)3×5﹣28÷(﹣2)2.考點: 有理數(shù)的混合運算.專題: 計算題.分析: 原式先計算乘方運算,再計算乘除運算,最后算加減運算即可得到結(jié)果.解答: 解:原式=﹣9﹣40﹣7=﹣56.點評: 此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.五、化簡:(每小題4分,共8分)23.(4分)7x﹣2y2+8+y2﹣5x.考點: 合并同類項.分析: 根據(jù)合并同類項的法則:系數(shù)相加字母部分不變,可得答案.解答: 解:原式=(7x﹣5x)+(﹣2y2+y2)+8=2x﹣y2+8.點評: 本題考查了合并同類項,系數(shù)相加字母部分不變是解題關(guān)鍵.24.(4分)(﹣4b2+3a2)﹣(a2﹣2b2)﹣2(b2+a2)考點: 整式的加減.分析: 先去括號,然后合并同類項求解.解答: 解:原式=﹣4b2+3a2﹣a2+2b2﹣2b2﹣2a2=﹣4b2.點評: 本題考查了整式的加減,解答本題的關(guān)鍵是掌握去括號法則和合并同類項法則.25.(6分)先化簡,后求值:(9ab+6b2)﹣3(ab﹣b2)﹣1,其中a=﹣1,b=.[來源:學(xué)+科+網(wǎng)][來源:學(xué)+科+網(wǎng)]考點: 整式的加減—化簡求值.專題: 計算題.分析: 原式去括號合并得到最簡結(jié)果,把a與b的值代入計算即可求出值.解答: 解:原式=9ab+6b2﹣3ab+2b2﹣1=6ab+8b2﹣1,當(dāng)a=﹣1,b=時,原式=﹣3+2﹣1=﹣2.點評: 此題考查了整式的加減﹣化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.六、解答題(每題6分,共12分)26.(6分)某交通警察駕駛摩托車在一條東西走向的公路上要巡邏,從A地出發(fā),向東走的記為正,向西走的記為負(fù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林藝術(shù)學(xué)院《影視照明技術(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《書法實訓(xùn)I》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《剪輯基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年供熱管網(wǎng)互聯(lián)互通協(xié)議書模板
- 吉林師范大學(xué)《中國東北史》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年大型綠植售賣合同范本
- 2024年大廠員工合同范本
- 娛樂場營銷合同協(xié)議書范文范本
- (浙教2024版)科學(xué)七年級上冊3.2 太陽系的組成與結(jié)構(gòu) 課件(共2課時)
- 吉林師范大學(xué)《外國古代教育史》2021-2022學(xué)年第一學(xué)期期末試卷
- JGJ48-2014 商店建筑設(shè)計規(guī)范
- 病原微生物實驗室生物安全管理培訓(xùn)考核試題
- 健康宣教的方法與技巧課件
- 當(dāng)代社會政策分析 課件 第七章 老年社會政策
- 2024年湖北聯(lián)投集團(tuán)有限公司校園招聘考試試題各版本
- 《無人機(jī)駕駛航空試驗基地(試驗區(qū))基礎(chǔ)設(shè)施建設(shè)規(guī)范(征求意見稿)》
- 人教版三年級英語上冊期中模擬考試【帶答案】
- MOOC 藥物代謝動力學(xué)-中國藥科大學(xué) 中國大學(xué)慕課答案
- 供應(yīng)鏈協(xié)同規(guī)劃:整合供應(yīng)鏈資源、提高供應(yīng)鏈效率
- 水利工程運維水利工程運行和日常維修養(yǎng)護(hù)方案
- 2024上海市標(biāo)準(zhǔn)房屋租賃合同官方版
評論
0/150
提交評論