2023屆拉薩市重點中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第1頁
2023屆拉薩市重點中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第2頁
2023屆拉薩市重點中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第3頁
2023屆拉薩市重點中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第4頁
2023屆拉薩市重點中學九年級數(shù)學第一學期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.若一個扇形的圓心角是45°,面積為,則這個扇形的半徑是()A.4 B. C. D.2.如圖,為的直徑,弦于點,,,則的半徑為()A.5 B.8 C.3 D.103.如圖,邊長為的正方形的對角線與交于點,將正方形沿直線折疊,點落在對角線上的點處,折痕交于點,則()A. B. C. D.4.方程x2﹣5=0的實數(shù)解為()A. B. C. D.±55.如果,兩點都在反比例函數(shù)的圖象上,那么與的大小關(guān)系是()A. B. C. D.6.如果,那么下列比例式中正確的是()A. B. C. D.7.若點是反比例函數(shù)圖象上一點,則下列說法正確的是()A.圖象位于二、四象限B.當時,隨的增大而減小C.點在函數(shù)圖象上D.當時,8.sin30°的值為()A. B. C. D.9.在一個不透明的袋子里裝有6個顏色不同的球(除顏色不同外,質(zhì)地、大小均相同),其中個球為紅球,個球為白球,若從該袋子里任意摸出1個球,則摸出的球是白球的概率為()A. B. C. D.10.如圖,任意轉(zhuǎn)動正六邊形轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指向大于3的數(shù)的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖所示,在中,,點是重心,聯(lián)結(jié),過點作,交于點,若,,則的周長等于______.12.如圖,由四個全等的直角三角形圍成的大正方形ABCD的面積為34,小正方形EFGH的面積為4,則tan∠DCG的值為_____.13.在一個不透明的盒子中裝有a個除顏色外完全相同的球,其中只有6個白球.若每次將球充分攪勻后,任意摸出1個球記下顏色后再放回盒子,通過大量重復試驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在20%左右,則a的值約為_____.14.如圖,路燈距離地面8米,身高1.6米的小明站在距離燈的底部(點O)20米的A處,則小明的影子AM長為米.15.拋物線y=x2﹣4x﹣5與x軸的兩交點間的距離為___________.16.如圖,在矩形紙片中,將沿翻折,使點落在上的點處,為折痕,連接;再將沿翻折,使點恰好落在上的點處,為折痕,連接并延長交于點,若,,則線段的長等于_____.17.如圖,等腰直角的頂點在正方形的對角線上,所在的直線交于點,交于點,連接,.下列結(jié)論中,正確的有_________(填序號).①;②是的一個三等分點;③;④;⑤.18.某校去年投資2萬元購買實驗器材,預計今明2年的投資總額為8萬元.若該校這兩年購買的實驗器材的投資年平均增長率為x,則可列方程為_____.三、解答題(共66分)19.(10分)為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:使用次數(shù)05101520人數(shù)11431(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是次,眾數(shù)是次.(2)若小明同學把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是.(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).20.(6分)已知:如圖(1),射線AM∥射線BN,AB是它們的公垂線,點D、C分別在AM、BN上運動(點D與點A不重合、點C與點B不重合),E是AB邊上的動點(點E與A、B不重合),在運動過程中始終保持DE⊥EC.(1)求證:△ADE∽△BEC;(2)如圖(2),當點E為AB邊的中點時,求證:AD+BC=CD;(3)當AD+DE=AB=時.設AE=m,請?zhí)骄浚骸鰾EC的周長是否與m值有關(guān)?若有關(guān),請用含有m的代數(shù)式表示△BEC的周長;若無關(guān),請說明理由.21.(6分)解方程:x2+x﹣3=1.22.(8分)如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于C,交弦AB于D.求作此殘片所在的圓(不寫作法,保留作圖痕跡).23.(8分)校生物小組有一塊長32m,寬20m的矩形實驗田,為了管理方便,準備沿平行于兩邊的方向縱、橫個開辟一條等寬的小道,要使種植面積為540m2,小道的寬應是多少米?24.(8分)北京市第十五屆人大常委會第十六次會議表決通過《關(guān)于修改<北京市生活垃圾管理條例>的決定》,規(guī)定將生活垃圾分為廚余垃圾、可回收物、有害垃圾、其它垃圾四大基本品類,修改后的條例將于2020年5月1日實施.某小區(qū)決定在2020年1月到3月期間在小區(qū)內(nèi)設置四種垃圾分類廂:廚余垃圾、可回收物、有害垃圾、其它垃圾,分別記為A、B、C、D,進行垃圾分類試投放,以增強居民垃圾分類意識.(1)小明家按要求將自家的生活垃圾分成了四類,小明從分好類的垃圾中隨機拿了一袋,并隨機投入一個垃圾箱中,請用畫樹狀圖的方法求垃圾投放正確的概率;(2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該小區(qū)四類垃圾箱中共1000千克生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:千克):ABCD廚余垃圾4001004060可回收物251402015有害垃圾5206015其它垃圾25152040求“廚余垃圾”投放正確的概率.25.(10分)某公司銷售某一種新型通訊產(chǎn)品,已知每件產(chǎn)品的進價為4萬元,每月銷售該種產(chǎn)品的總開支(不含進價)總計11萬元,在銷售過程中發(fā)現(xiàn),月銷售量(件)與銷售單價(萬元)之間存在著如圖所示的一次函數(shù)關(guān)系(1)求關(guān)于的函數(shù)關(guān)系式.(2)試寫出該公司銷售該種產(chǎn)品的月獲利(萬元)關(guān)于銷售單價(萬元)的函數(shù)關(guān)系式,當銷售單價為何值時,月獲利最大?并求這個最大值.(月獲利=月銷售額一月銷售產(chǎn)品總進價一月總開支)26.(10分)已知二次函數(shù)的圖象如圖所示.(1)求這個二次函數(shù)的表達式;(2)當﹣1≤x≤4時,求y的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)扇形面積公式計算即可.【詳解】解:設扇形的半徑為為R,由題意得,解得R=4.故選A.【點睛】本題考查了扇形的面積公式,R是扇形半徑,n是弧所對圓心角度數(shù),π是圓周率,L是扇形對應的弧長.那么扇形的面積為:.2、A【分析】作輔助線,連接OA,根據(jù)垂徑定理得出AE=BE=4,設圓的半徑為r,再利用勾股定理求解即可.【詳解】解:如圖,連接OA,設圓的半徑為r,則OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案為:A.【點睛】本題考查的知識點主要是垂徑定理、勾股定理及其應用問題;解題的關(guān)鍵是作輔助線,靈活運用勾股定理等幾何知識點來分析、判斷或解答.3、D【分析】過點M作MP⊥CD垂足為P,過點O作OQ⊥CD垂足為Q,根據(jù)正方形的性質(zhì)得到AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,根據(jù)折疊的性質(zhì)得到∠EDF=∠CDF,設OM=PM=x,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】過點M作MP⊥CD垂足為P,過點O作OQ⊥CD垂足為Q,∵正方形的邊長為,∴OD=1,OC=1,OQ=DQ=,由折疊可知,∠EDF=∠CDF.又∵AC⊥BD,∴OM=PM,設OM=PM=x∵OQ⊥CD,MP⊥CD∴∠OQC=∠MPC=900,∠PCM=∠QCO,∴△CMP∽△COQ∴,即,解得x=-1∴OM=PM=-1.故選D【點睛】此題考查正方形的性質(zhì),折疊的性質(zhì),相似三角形的性質(zhì)與判定,角平分線的性質(zhì),解題關(guān)鍵在于作輔助線4、C【分析】利用直接開平方法求解可得.【詳解】解:∵x2﹣5=0,∴x2=5,則x=,故選:C.【點睛】本題考查解方程,熟練掌握計算法則是解題關(guān)鍵.5、C【分析】直接把點A(1,y1),B(3,y1)兩點代入反比例函數(shù)中,求出y1與y1的值,再比較其大小即可.【詳解】解:∵A(1,y1),B(3,y1)兩點都在反比例函數(shù)的圖象上;∴y1>y1.

故選:C.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.6、C【分析】根據(jù)比例的性質(zhì),若,則判斷即可.【詳解】解:故選:C.【點睛】本題主要考查了比例的性質(zhì),靈活的利用比例的性質(zhì)進行比例變形是解題的關(guān)鍵.7、B【分析】先根據(jù)點A(3、4)是反比例函數(shù)y=圖象上一點求出k的值,求出函數(shù)的解析式,由此函數(shù)的特點對四個選項進行逐一分析.【詳解】∵點A(3,4)是反比例函數(shù)y=圖象上一點,

∴k=xy=3×4=12,

∴此反比例函數(shù)的解析式為y=,

A、因為k=12>0,所以此函數(shù)的圖象位于一、三象限,故本選項錯誤;

B、因為k=12>0,所以在每一象限內(nèi)y隨x的增大而減小,故本選項正確;

C、因為2×(-6)=-12≠12,所以點(2、-6)不在此函數(shù)的圖象上,故本選項錯誤;

D、當y≤4時,即y=≤4,解得x<0或x≥3,故本選項錯誤.

故選:B.【點睛】此題考查反比例函數(shù)圖象上點的坐標特點,根據(jù)題意求出反比例函數(shù)的解析式是解答此題的關(guān)鍵.8、C【分析】直接利用特殊角的三角函數(shù)值求出答案.【詳解】解:sin30°=故選C【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)特殊角的三角函數(shù)值是解題關(guān)鍵.9、D【分析】讓白球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共有6個球,白球有4個,

所以從布袋里任意摸出1個球,摸到白球的概率為:.

故選:D.【點睛】本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.10、D【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.二、填空題(每小題3分,共24分)11、10【分析】延長AG交BC于點H,由G是重心,推出,再由得出,從而可求AD,DG,AG的長度,進而答案可得.【詳解】延長AG交BC于點H∵G是重心,∴∵∴∵,AH是斜邊中線,∴∴∴∴的周長等于故答案為:10【點睛】本題主要考查三角形重心的性質(zhì)及平行線分線段成比例,掌握三角形重心的性質(zhì)是解題的關(guān)鍵.12、【分析】根據(jù)大正方形的面積為,小正方形的面積為即可得到,,再根據(jù)勾股定理,即可得到,進而求得的值.【詳解】由題意可知:大正方形的面積為,小正方形的面積為,四個直角三角形全等,設,則由勾股定理可得:在中,解之得:在中,故答案為【點睛】本題主要考查了勾股定理以及解直角三角形的應用,明確銳角三角函數(shù)的邊角對應關(guān)系,設未知數(shù)利用勾股定理是解題關(guān)鍵.13、1.【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在20%左右得到比例關(guān)系,列出方程求解即可.【詳解】由題意可得,×100%=20%,解得,a=1.故答案為1.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應的等量關(guān)系.14、1.【解析】根據(jù)題意,易得△MBA∽△MCO,根據(jù)相似三角形的性質(zhì)可知,即,解得AM=1.∴小明的影長為1米.15、1【分析】根據(jù)拋物線y=x2-4x-5,可以求得拋物線y=x2-4x-5與x軸的交點坐標,即可求得拋物線y=x2-4x-5與x軸的兩交點間的距離.【詳解】解:∵y=x2-4x-5=(x-5)(x+1),∴當y=0時,x1=5,x2=-1,∴拋物線y=x2-4x-5與x軸的兩交點的坐標為(5,0),(-1,0),∴拋物線y=x2-4x-5與x軸的兩交點間的距離為:5-(-1)=5+1=1,故答案為:1.【點睛】本題主要考查拋物線與x軸的交點,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答。16、.【分析】根據(jù)折疊可得是正方形,,,,可求出三角形的三邊為3,4,5,在中,由勾股定理可以求出三邊的長,通過作輔助線,可證∽,三邊占比為3:4:5,設未知數(shù),通過,列方程求出待定系數(shù),進而求出的長,然后求的長.【詳解】過點作,,垂足為、,由折疊得:是正方形,,,,,∴,在中,,∴,在中,設,則,由勾股定理得,,解得:,∵,,∴∽,∴,設,則,,∴,,解得:,∴,∴,故答案為.【點睛】考查折疊軸對稱的性質(zhì),矩形、正方形的性質(zhì),直角三角形的性質(zhì)等知識,知識的綜合性較強,是有一定難度的題目.17、①②④【分析】根據(jù)△CBE≌△CDF即可判斷①;由△CBE≌△CDF得出∠EBC=∠FDC=45°進而得出△DEF為直角三角形結(jié)合即可判斷②;判斷△BEN是否相似于△BCE即可判斷③;根據(jù)△BNE∽△DME即可判斷④;作EH⊥BC于點H得出△EHC∽△FDE結(jié)合tan∠HEC=tan∠DFE=2,設出線段比即可判斷⑤.【詳解】∵△CEF為等腰直角三角形∴CE=CF,∠ECF=90°又ABCD為正方形∴∠BCD=90°,BC=DC又∠BCD=∠BCE+∠ECD∠ECF=∠ECD+∠DCF∴∠DCF=∠BCE∴△CBE≌△CDF(SAS)∴BE=DF,故①正確;∴∠EBC=∠FDC=45°故∠EDF=∠EDC+∠FDC=90°又∴E是BD的一個三等分點,故②正確;∵∴即判定△BEN∽△BCE∵△ECF為等腰直角三角形,BD為正方形對角線∴∠CFE=45°=∠EDC∴∠CFE+∠MCF=∠EDC+∠DEM∴∠MCF=∠DEM然而題目并沒有告訴M是EF的中點∴∠ECM≠∠MCF∴∠ECM≠∠DEM≠∠BNE∴不能判定△BEN∽△BCE∴不能得出進而不能得出,故③錯誤;由題意可知△BNE∽△DME又BE=2DE∴BN=2DM,故④正確;作EH⊥BC于點H∵∠MCF=∠DEM又∠HCE=∠DCF∴∠HCE=∠DEM又∠EHC=∠FDE=90°∴△EHC∽△FDE∴tan∠HEC=tan∠DFE=2可設EH=x,則CH=2xEC=∴sin∠BCE=,故⑤錯誤;故答案為①②④.【點睛】本題考查的是正方形綜合,難度系數(shù)較大,涉及到了相似三角形的判定與性質(zhì),勾股定理、等腰直角三角形的性質(zhì)以及方程的思想等,需要熟練掌握相關(guān)基礎知識.18、2(1+x)+2(1+x)2=1.【分析】本題為增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果該校這兩年購買的實驗器材的投資年平均增長率為x,根據(jù)題意可得出的方程.【詳解】設該校這兩年購買的實驗器材的投資年平均增長率為x,今年的投資金額為:2(1+x),明年的投資金額為:2(1+x)2,所以根據(jù)題意可得出的方程:2(1+x)+2(1+x)2=1.故答案為:2(1+x)+2(1+x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,增長率問題,一般形式為a(1+x)2=b,a為起始時間的有關(guān)數(shù)量,b為終止時間的有關(guān)數(shù)量.三、解答題(共66分)19、(1)10,10;(2)中位數(shù)和眾數(shù);(3)22000【分析】(1)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義分別求解可得;

(2)由中位數(shù)和眾數(shù)不受極端值影響可得答案;

(3)用總?cè)藬?shù)乘以樣本中居民的平均使用次數(shù)即可得.【詳解】解:(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是:(次),根據(jù)使用次數(shù)可得:眾數(shù)為10次;(2)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是中位數(shù)和眾數(shù),

故答案為:中位數(shù)和眾數(shù);(3)平均數(shù)為(次),(次)估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為22000次.【點睛】本題考查的是平均數(shù)、眾數(shù)、中位數(shù)的定義及其求法,牢記定義是關(guān)鍵.20、(1)詳見解析;(2)詳見解析;(3)的周長與m值無關(guān),理由詳見解析.【分析】(1)由直角梯形ABCD中∠A為直角,得到三角形ADE為直角三角形,可得出兩銳角互余,再由DE與EC垂直,利用垂直的定義得到∠DEC為直角,利用平角的定義推出一對角互余,利用同角的余角相等可得出一對角相等,再由一對直角相等,利用兩對對應角相等的兩三角形相似可得證;(2)延長DE、CB交于F,證明△ADE≌△BFE,根據(jù)全等三角形的性質(zhì)得到DE=FE,AD=BF由CE⊥DE,得到直線CE是線段DF的垂直平分線,由線段垂直平分線的性質(zhì)得DC=FC.即可得到結(jié)論;(3)△BEC的周長與m的值無關(guān),理由為:設AD=x,由AD+DE=a,表示出DE.在直角三角形ADE中,利用勾股定理列出關(guān)系式,整理后記作①,由AB﹣AE=EB,表示出BE,根據(jù)(1)得到:△ADE∽△BEC,由相似得比例,將各自表示出的式子代入,表示出BC與EC,由EB+EC+BC表示出三角形EBC的周長,提取a﹣m后,通分并利用同分母分式的加法法則計算,再利用平方差公式化簡后,記作②,將①代入②,約分后得到一個不含m的式子,即周長與m無關(guān).【詳解】(1)∵直角梯形ABCD中,∠A=90°,∴∠ADE+∠AED=90°,又∵DE⊥CE,∴∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,又∵∠A=∠B=90°,∴△ADE∽△BEC;(2)延長DE、CB交于F,如圖2所示.∵AD∥BC,∴∠A=∠EBF,∠ADE=∠F.∵E是AB的中點,∴AE=BE.在△ADE和△BFE中,∵∠A=∠EBF,∠ADE=∠F,AE=BE,∴△ADE≌△BFE,∴DE=FE,AD=BF.∵CE⊥DE,∴直線CE是線段DF的垂直平分線,∴DC=FC.∵FC=BC+BF=BC+AD,∴AD+BC=CD.(3)△BEC的周長與m的值無關(guān),理由為:設AD=x,由AD+DE=AB=a,得:DE=a﹣x.在Rt△AED中,根據(jù)勾股定理得:AD2+AE2=DE2,即x2+m2=(a﹣x)2,整理得:a2﹣m2=2ax,…①在△EBC中,由AE=m,AB=a,得:BE=AB﹣AE=a﹣m.∵由(1)知△ADE∽△BEC,∴,即,解得:BC,EC,∴△BEC的周長=BE+BC+EC=(a﹣m)=(a﹣m)(1)=(a﹣m)?,…②把①代入②得:△BEC的周長=BE+BC+EC2a,則△BEC的周長與m無關(guān).【點睛】本題是相似形綜合題,涉及的知識有:相似三角形的判定與性質(zhì),勾股定理,平行線的判定與性質(zhì),分式的化簡求值,利用了轉(zhuǎn)化及整體代入的數(shù)學思想,做第三問時注意利用已證的結(jié)論.21、x1=-1+132,x2=【解析】利用公式法解方程即可.【詳解】∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>1,∴x=﹣1∴x1=-1+132,x2=【點睛】本題主要考查解一元二次方程,熟練掌握一元二次方程的幾種解法是解答的關(guān)鍵.22、見解析【分析】由垂徑定理知,垂直于弦的直徑是弦的中垂線,故作AC的中垂線交直線CD于點O,則點O是弧ACB所在圓的圓心.【詳解】作弦AC的垂直平分線交直線CD于O點,以O為圓心OA長為半徑作圓O就是此殘片所在的圓,如圖.【點睛】本題考查的是垂徑定理的應用,熟知“平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧”是解答此題的關(guān)鍵.23、2m【詳解】解:設道路的寬為xm,(32-x)(20-x)=540,整理,得x2-52x+100=0,∴(x-50)(x-2)=0,∴x1=2,x2=50(不合題意,舍去),小道的寬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論