版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精PAGE18學(xué)必求其心得,業(yè)必貴于專精PAGE第2課時(shí)組合的應(yīng)用學(xué)習(xí)目標(biāo)1。能應(yīng)用組合知識(shí)解決有關(guān)組合的簡單實(shí)際問題。2.能解決有限制條件的組合問題.知識(shí)點(diǎn)組合應(yīng)用題的解法1.無限制條件的組合應(yīng)用題的解法步驟為:一、判斷;二、轉(zhuǎn)化;三、求值;四、作答.2.有限制條件的組合應(yīng)用題的解法常用解法有:直接法、間接法.可將條件視為特殊元素或特殊位置,一般地按從不同位置選取元素的順序分步,或按從同一位置選取的元素個(gè)數(shù)的多少分類.類型一有限制條件的組合問題例1去年7月23日,某鐵路線發(fā)生特大交通事故,某醫(yī)院從10名醫(yī)療專家中抽調(diào)6名赴事故現(xiàn)場搶救傷員,其中這10名醫(yī)療專家中有4名是外科專家.問:(1)抽調(diào)的6名專家中恰有2名是外科專家的抽調(diào)方法有多少種?(2)至少有2名外科專家的抽調(diào)方法有多少種?(3)至多有2名外科專家的抽調(diào)方法有多少種?反思與感悟(1)解決有約束條件的組合問題與解決有約束條件的排列問題的方法一樣,都是遵循“誰特殊誰優(yōu)先”的原則,在此前提下,采用分類或分步法或用間接法.(2)要正確理解題中的關(guān)鍵詞,如“至少”“至多”“含"“不含"等的確切含義,正確分類,合理分步.(3)要謹(jǐn)防重復(fù)或遺漏,當(dāng)直接法中分類較復(fù)雜時(shí),可考慮用間接法處理,即“正難則反”的策略.跟蹤訓(xùn)練1男運(yùn)動(dòng)員6名,女運(yùn)動(dòng)員4名,其中男女隊(duì)長各1名,選派5人外出比賽,在下列情形中各有多少種選派方法?(1)男運(yùn)動(dòng)員3名,女運(yùn)動(dòng)員2名;(2)至少有1名女運(yùn)動(dòng)員;(3)既要有隊(duì)長,又要有女運(yùn)動(dòng)員.類型二與幾何有關(guān)的組合應(yīng)用題例2如圖,在以AB為直徑的半圓周上,有異于A,B的六個(gè)點(diǎn)C1,C2,…,C6,線段AB上有異于A,B的四個(gè)點(diǎn)D1,D2,D3,D4。(1)以這10個(gè)點(diǎn)中的3個(gè)點(diǎn)為頂點(diǎn)可作多少個(gè)三角形?其中含C1點(diǎn)的有多少個(gè)?(2)以圖中的12個(gè)點(diǎn)(包括A,B)中的4個(gè)點(diǎn)為頂點(diǎn),可作出多少個(gè)四邊形?反思與感悟(1)圖形多少的問題通常是組合問題,要注意共點(diǎn)、共線、共面、異面等情形,防止多算.常用直接法,也可采用間接法.(2)在處理幾何問題中的組合問題時(shí),應(yīng)將幾何問題抽象成組合問題來解決.跟蹤訓(xùn)練2空間中有10個(gè)點(diǎn),其中有5個(gè)點(diǎn)在同一個(gè)平面內(nèi),其余點(diǎn)無三點(diǎn)共線,四點(diǎn)共面,則以這些點(diǎn)為頂點(diǎn),共可構(gòu)成四面體的個(gè)數(shù)為()A.205B.110C.204D.200類型三分組、分配問題命題角度1不同元素分組、分配問題例3有6本不同的書,按下列分配方式分配,則共有多少種不同的分配方式?(1)分成三組,每組分別有1本,2本,3本;(2)分給甲、乙、丙三人,其中一個(gè)人1本,一個(gè)人2本,一個(gè)人3本;(3)分成三組,每組都是2本;(4)分給甲、乙、丙三人,每人2本.反思與感悟分組、分配問題的求解策略常見形式處理方法非均勻不編號(hào)分組n個(gè)不同元素分成m組,每組元素?cái)?shù)目均不相同,且不考慮各組間的順序,不管是否分盡,分法種數(shù)為:A=Cm1n·Cm2n-m1·Cm3n-(m1+m2)·…·Cmmn-(m1+m2+…+mm-1)均勻不編號(hào)分組將n個(gè)不同元素分成不編號(hào)的m組,假定其中r組元素個(gè)數(shù)相等,不管是否分盡,其分法種數(shù)為eq\f(A,A\o\al(r,r))(其中A為非均勻不編號(hào)分組中的分法數(shù)).如果再有k組均勻組應(yīng)再除以Aeq\o\al(k,k)非均勻編號(hào)分組n個(gè)不同元素分成m組,各組元素?cái)?shù)目均不相等,且考慮各組間的順序,其分法種數(shù)為A·Aeq\o\al(m,m)均勻編號(hào)分組n個(gè)不同元素分成m組,其中r組元素個(gè)數(shù)相同且考慮各組間的順序,其分法種數(shù)為eq\f(A,A\o\al(r,r))·Aeq\o\al(m,m)跟蹤訓(xùn)練3某賓館安排A、B、C、D、E五人入住3個(gè)房間,每個(gè)房間至少住1人,且A,B不能住同一房間,則不同的安排方法的種數(shù)為()A.24B.48C.96D.114命題角度2相同元素分配問題例4將6個(gè)相同的小球放入4個(gè)編號(hào)為1,2,3,4的盒子,求下列方法的種數(shù).(1)每個(gè)盒子都不空;(2)恰有一個(gè)空盒子;(3)恰有兩個(gè)空盒子.反思與感悟相同元素分配問題的處理策略(1)隔板法:如果將放有小球的盒子緊挨著成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相鄰兩塊隔板形成一個(gè)“盒".每一種插入隔板的方法對(duì)應(yīng)著小球放入盒子的一種方法,此法稱之為隔板法.隔板法專門解決相同元素的分配問題.(2)將n個(gè)相同的元素分給m個(gè)不同的對(duì)象(n≥m),有Ceq\o\al(m-1,n-1)種方法.可描述為n-1個(gè)空中插入m-1塊板.跟蹤訓(xùn)練4有10個(gè)運(yùn)動(dòng)員名額,分給班號(hào)分別為1,2,3的3個(gè)班.(1)每班至少有1個(gè)名額,有多少種分配方案?(2)每班至少有2個(gè)名額,有多少種分配方案?(3)每班的名額不能少于其班號(hào)數(shù),有多少種分配方案?(4)可以允許某些班級(jí)沒有名額,有多少種分配方案?1.從5名男醫(yī)生,4名女醫(yī)生中選3名醫(yī)生組成一個(gè)醫(yī)療小分隊(duì),要求其中男、女醫(yī)生都有,則不同的組隊(duì)方案共有()A.70種 B.80種C.100種 D.140種2.某食堂每天中午準(zhǔn)備4種不同的葷菜,7種不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任選兩種葷菜、兩種蔬菜和白米飯;(2)任選一種葷菜、兩種蔬菜和蛋炒飯.則每天不同午餐的搭配方法共有()A.210種 B.420種C.56種 D.22種3.甲、乙、丙三位同學(xué)選修課程,從4門課程中,甲選修2門,乙、丙各選修3門,則不同的選修方案共有()A.36種 B.48種C.96種 D.192種4.直角坐標(biāo)平面xOy上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()A.25個(gè) B.36個(gè)C.100個(gè) D.225個(gè)5.要從12人中選出5人參加一次活動(dòng),其中A,B,C三人至多兩人入選,則有________種不同選法.1.無限制條件的組合應(yīng)用題的解題步驟(1)判斷.(2)轉(zhuǎn)化.(3)求值.(4)作答.2.有限制條件的組合應(yīng)用題的分類(1)“含"與“不含”問題:這類問題的解題思路是將限制條件視為特殊元素和特殊位置,一般來講,特殊要先滿足,其余則“一視同仁”.若正面入手不易,則從反面入手,尋找問題的突破口,即采用排除法.解題時(shí)要注意分清“有且僅有”“至多”“至少”“全是”“都不是”“不都是”等詞語的確切含義,準(zhǔn)確把握分類標(biāo)準(zhǔn).(2)幾何中的計(jì)算問題:在處理幾何問題中的組合應(yīng)用問題時(shí),應(yīng)先明確幾何中的點(diǎn)、線、面及構(gòu)型,明確平面圖形和立體圖形中的點(diǎn)、線、面之間的關(guān)系,將幾何問題抽象成組合問題來解決.(3)分組、分配問題:分組問題和分配問題是有區(qū)別的,前者組與組之間只要元素個(gè)數(shù)相同,是不可區(qū)分的,而后者即使兩組元素個(gè)數(shù)相同,但因元素不同,仍然是可區(qū)分的.
答案精析題型探究例1解(1)分兩步:首先從4名外科專家中任選2名,有Ceq\o\al(2,4)種選法,再從除外科專家的6人中選取4人,有Ceq\o\al(4,6)種選法,所以共有Ceq\o\al(2,4)Ceq\o\al(4,6)=90(種)抽調(diào)方法.(2)“至少"的含義是不低于,有兩種解答方法,方法一(直接法):按選取的外科專家的人數(shù)分類:①選2名外科專家,共有Ceq\o\al(2,4)Ceq\o\al(4,6)種選法;②選3名外科專家,共有Ceq\o\al(3,4)Ceq\o\al(3,6)種選法;③選4名外科專家,共有Ceq\o\al(4,4)Ceq\o\al(2,6)種選法.根據(jù)分類加法計(jì)數(shù)原理,共有Ceq\o\al(2,4)Ceq\o\al(4,6)+Ceq\o\al(3,4)Ceq\o\al(3,6)+Ceq\o\al(4,4)Ceq\o\al(2,6)=185(種)抽調(diào)方法.方法二(間接法):不考慮是否有外科專家,共有Ceq\o\al(6,10)種選法,若選取1名外科專家參加,有Ceq\o\al(1,4)Ceq\o\al(5,6)種選法;沒有外科專家參加,有Ceq\o\al(6,6)種選法,所以共有Ceq\o\al(6,10)-Ceq\o\al(1,4)Ceq\o\al(5,6)-Ceq\o\al(6,6)=185(種)抽調(diào)方法.(3)“至多2名”包括“沒有”、“有1名”和“有2名"三種情況,分類解答.①?zèng)]有外科專家參加,有Ceq\o\al(6,6)種選法;②有1名外科專家參加,有Ceq\o\al(1,4)Ceq\o\al(5,6)種選法;③有2名外科專家參加,有Ceq\o\al(2,4)Ceq\o\al(4,6)種選法.所以共有Ceq\o\al(6,6)+Ceq\o\al(1,4)Ceq\o\al(5,6)+Ceq\o\al(2,4)Ceq\o\al(4,6)=115(種)抽調(diào)方法.跟蹤訓(xùn)練1解(1)第一步:選3名男運(yùn)動(dòng)員,有Ceq\o\al(3,6)種選法;第二步:選2名女運(yùn)動(dòng)員,有Ceq\o\al(2,4)種選法,故共有Ceq\o\al(3,6)·Ceq\o\al(2,4)=120(種)選法.(2)方法一(直接法):“至少有1名女運(yùn)動(dòng)員"包括以下幾種情況,1女4男,2女3男,3女2男,4女1男.由分類加法計(jì)數(shù)原理知共有Ceq\o\al(1,4)·Ceq\o\al(4,6)+Ceq\o\al(2,4)·Ceq\o\al(3,6)+Ceq\o\al(3,4)·Ceq\o\al(2,6)+Ceq\o\al(4,4)·Ceq\o\al(1,6)=246(種)選法.方法二(間接法):不考慮條件,從10人中任選5人,有Ceq\o\al(5,10)種選法,其中全是男運(yùn)動(dòng)員的選法有Ceq\o\al(5,6)種,故“至少有1名女運(yùn)動(dòng)員”的選法有Ceq\o\al(5,10)-Ceq\o\al(5,6)=246(種).(3)當(dāng)有女隊(duì)長時(shí),其他人選法任意,共有Ceq\o\al(4,9)種選法;不選女隊(duì)長時(shí),必選男隊(duì)長,共有Ceq\o\al(4,8)種選法,其中不含女運(yùn)動(dòng)員的選法有Ceq\o\al(4,5)種,故不選女隊(duì)長時(shí)共有Ceq\o\al(4,8)-Ceq\o\al(4,5)種選法.所以既有隊(duì)長又有女運(yùn)動(dòng)員的選法共有Ceq\o\al(4,9)+Ceq\o\al(4,8)-Ceq\o\al(4,5)=191(種).例2解(1)方法一可作出三角形Ceq\o\al(3,6)+Ceq\o\al(1,6)·Ceq\o\al(2,4)+Ceq\o\al(2,6)·Ceq\o\al(1,4)=116(個(gè)).方法二可作三角形Ceq\o\al(3,10)-Ceq\o\al(3,4)=116(個(gè)),其中以C1為頂點(diǎn)的三角形有Ceq\o\al(2,5)+Ceq\o\al(1,5)·Ceq\o\al(1,4)+Ceq\o\al(2,4)=36(個(gè)).(2)可作出四邊形Ceq\o\al(4,6)+Ceq\o\al(3,6)·Ceq\o\al(1,6)+Ceq\o\al(2,6)·Ceq\o\al(2,6)=360(個(gè)).跟蹤訓(xùn)練2A例3解(1)分三步:先選一本有Ceq\o\al(1,6)種選法,再從余下的5本中選兩本有Ceq\o\al(2,5)種選法,最后余下的三本全選有Ceq\o\al(3,3)種選法.由分步乘法計(jì)數(shù)原理知,分配方式共有Ceq\o\al(1,6)·Ceq\o\al(2,5)·Ceq\o\al(3,3)=60(種).(2)由于甲、乙、丙是不同的三個(gè)人,在(1)問的基礎(chǔ)上,還應(yīng)考慮再分配問題.因此,分配方式共有Ceq\o\al(1,6)·Ceq\o\al(2,5)·Ceq\o\al(3,3)·Aeq\o\al(3,3)=360(種).(3)先分三組,有Ceq\o\al(2,6)Ceq\o\al(2,4)Ceq\o\al(2,2)種分法,但是這里面出現(xiàn)了重復(fù),不妨記六本書為A,B,C,D,E,F(xiàn),若第一組取了A,B,第二組取了C,D,第三組取了E,F(xiàn),則該種方法記為(AB,CD,EF),但Ceq\o\al(2,6)Ceq\o\al(2,4)Ceq\o\al(2,2)種分法中還有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB),(EF,CD,AB),(EF,AB,CD),共Aeq\o\al(3,3)種情況,而這Aeq\o\al(3,3)種情況只能作為一種分法,故分配方式有eq\f(C\o\al(2,6)·C\o\al(2,4)·C\o\al(2,2),A\o\al(3,3))=15(種).(4)在(3)的基礎(chǔ)上再分配即可,共有分配方式eq\f(C\o\al(2,6)·C\o\al(2,4)·C\o\al(2,2),A\o\al(3,3))·Aeq\o\al(3,3)=90(種).跟蹤訓(xùn)練3D例4解(1)先把6個(gè)相同的小球排成一行,在首尾兩球外側(cè)放置一塊隔板,然后在小球之間5個(gè)空隙中任選3個(gè)空隙各插一塊隔板,有Ceq\o\al(3,5)=10(種).(2)恰有一個(gè)空盒子,插板分兩步進(jìn)行.先在首尾兩球外側(cè)放置一塊隔板,并在5個(gè)空隙中任選2個(gè)空隙各插一塊隔板,如|0|000|00|,有Ceq\o\al(2,5)種插法,然后將剩下的一塊隔板與前面任意一塊并放形成空盒,如|0|000||00|,有Ceq\o\al(1,4)種插法,故共有Ceq\o\al(2,5)·Ceq\o\al(1,4)=40(種).(3)恰有兩個(gè)空盒子,插板分兩步進(jìn)行.先在首尾兩球外側(cè)放置一塊隔板,并在5個(gè)空隙中任選1個(gè)空隙各插一塊隔板,有Ceq\o\al(1,5)種插法,如|00|0000|,然后將剩下的兩塊隔板插入形成空盒.①這兩塊板與前面三塊板形成不相鄰的兩個(gè)盒子,如||00||0000|,有Ceq\o\al(2,3)種插法.②將兩塊板與前面三塊板之一并放,如|00|||0000|,有Ceq\o\al(1,3)種插法.故共有Ceq\o\al(1,5)·(Ceq\o\al(2,3)+Ceq\o\al(1,3))=30(種).跟蹤訓(xùn)練4解(1)因?yàn)?0個(gè)名額沒有差別,把它們排成一排,相鄰名額之間形成9個(gè)空隙,在9個(gè)空隙中選2個(gè)位置插入隔板,可把名額分成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術(shù)學(xué)院《文獻(xiàn)檢索與利用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東生態(tài)工程職業(yè)學(xué)院《海洋生物資源調(diào)查》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東青年職業(yè)學(xué)院《基礎(chǔ)醫(yī)學(xué)概論Ⅱ3(病理學(xué))》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)上冊(cè)《5.2.1 解一元一次方程 合并同類項(xiàng)》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《飛機(jī)裝配技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東嶺南職業(yè)技術(shù)學(xué)院《素描(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 會(huì)計(jì)年終工作總結(jié)
- 2025年人教版七年級(jí)數(shù)學(xué)寒假復(fù)習(xí) 專題01 有理數(shù)(6重點(diǎn)串講+15考點(diǎn)提升+過關(guān)檢測)
- 【全程復(fù)習(xí)方略】2020年高考化學(xué)課時(shí)提升作業(yè)(三十一)-11.1-脂肪烴(人教版-四川專供)
- 【狀元之路】2020-2021學(xué)年高中數(shù)學(xué)人教B版必修3雙基限時(shí)練12
- ☆問題解決策略:直觀分析 教案 2024-2025學(xué)年北師大版七年級(jí)數(shù)學(xué)上冊(cè)
- 四種“類碰撞”典型模型研究(講義)(解析版)-2025年高考物理一輪復(fù)習(xí)(新教材新高考)
- 青島版科學(xué)三年級(jí)上冊(cè)全冊(cè)課件教材
- 2025年湖北省襄陽某中學(xué)自主招生物理模擬試卷(附答案解析)
- Project項(xiàng)目管理(從菜鳥到實(shí)戰(zhàn)高手)
- 工程力學(xué)課后習(xí)題答案1
- 6S視覺管理之定置劃線顏色管理及標(biāo)準(zhǔn)樣式
- 2024國家開放大學(xué)電大本科《西方行政學(xué)說》期末試題及答案
- 四年級(jí)數(shù)學(xué)(除數(shù)是兩位數(shù))計(jì)算題專項(xiàng)練習(xí)及答案
- DL∕T 5783-2019 水電水利地下工程地質(zhì)超前預(yù)報(bào)技術(shù)規(guī)程
- 2024-2030年中國電子級(jí)四氟化硅行業(yè)風(fēng)險(xiǎn)評(píng)估及未來全景深度解析研究報(bào)告
評(píng)論
0/150
提交評(píng)論