版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B. C. D.2.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.3.設(shè),,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.5.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.6.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.17.下列不等式成立的是()A. B. C. D.8.一個(gè)正三角形的三個(gè)頂點(diǎn)都在雙曲線的右支上,且其中一個(gè)頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.11.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件12.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或7二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量服從正態(tài)分布,若,則_________.14.關(guān)于函數(shù)有下列四個(gè)命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關(guān)于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導(dǎo)函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號(hào))15.某校名學(xué)生參加軍事冬令營活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長、連長、營長、團(tuán)長、旅長、師長、軍長和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.16.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.18.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),如圖所示,當(dāng)直線經(jīng)過焦點(diǎn)時(shí),點(diǎn)恰好是的中點(diǎn),且.(1)求拋物線的方程;(2)點(diǎn)是原點(diǎn),設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時(shí),有數(shù)列滿足,設(shè)數(shù)列的前n項(xiàng)和為,已知存在正整數(shù)使得,求m的值.20.(12分)已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,.(1)求拋物線的方程;(2)當(dāng)以為直徑的圓與軸相切時(shí),求直線的方程.21.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個(gè)極值點(diǎn),,若,求的最小值.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.2、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.3、A【解析】
根據(jù)對數(shù)的運(yùn)算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點(diǎn)睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.4、C【解析】
,將看成一個(gè)整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.5、D【解析】
設(shè)圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設(shè)圓柱的底面半徑為,則其母線長為,因?yàn)閳A柱的表面積公式為,所以,解得,因?yàn)閳A柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點(diǎn)睛】本題考查圓柱的軸截面及表面積和體積公式;考查運(yùn)算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關(guān)鍵;屬于中檔題.6、B【解析】
,選B.7、D【解析】
根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對于,,,錯(cuò)誤;對于,在上單調(diào)遞減,,錯(cuò)誤;對于,,,,錯(cuò)誤;對于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.8、D【解析】
因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識(shí)的理解掌握水平.9、B【解析】
化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.10、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.11、B【解析】
求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問題的能力和計(jì)算能力,難度較易.12、C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、0.4【解析】
因?yàn)殡S機(jī)變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因?yàn)殡S機(jī)變量ζ服從正態(tài)分布所以正態(tài)曲線關(guān)于對稱,所.【點(diǎn)睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應(yīng)用,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.14、①②③【解析】
由單調(diào)性、對稱性概念、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值的關(guān)系進(jìn)行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關(guān)于中心對稱,②正確;,時(shí)取等號(hào),∴③正確;,設(shè),則,顯然是即的極小值點(diǎn),④錯(cuò)誤.故答案為:①②③.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與極值,解題時(shí)按照相關(guān)概念判斷即可,屬于中檔題.15、【解析】
對新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個(gè)學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個(gè)人組和個(gè)人組.①若新加入的學(xué)生是士兵,則可以將這個(gè)人分組如下;名士兵;士兵、排長、連長各名;營長、團(tuán)長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對稱性可知也可以是司令;②若新加入的學(xué)生是排長,則可以將這個(gè)人分組如下:名士兵;連長、營長、團(tuán)長各名;旅長、師長、軍長各名;名司令;名排長.所以新加入的學(xué)生可以是排長,由對稱性可知也可以是軍長;③若新加入的學(xué)生是連長,則可以將這個(gè)人分組如下:名士兵;士兵、排長、連長各名;連長、營長、團(tuán)長各名;旅長、師長、軍長各名;名司令.所以新加入的學(xué)生可以是連長,由對稱性可知也可以是師長;④若新加入的學(xué)生是營長,則可以將這個(gè)人分組如下:名士兵;排長、連長、營長各名;營長、團(tuán)長、旅長各名;師長、軍長、司令各名;名司令.所以新加入的學(xué)生可以是營長,由對稱性可知也可以是旅長;⑤若新加入的學(xué)生是團(tuán)長,則可以將這個(gè)人分組如下:名士兵;排長、連長、營長各名;旅長、師長、軍長各名;名司令;名團(tuán)長.所以新加入的學(xué)生可以是團(tuán)長.綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點(diǎn)睛】本題考查分類計(jì)數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對新加入的學(xué)生所扮演的角色進(jìn)行分類討論,屬于中等題.16、【解析】乙不輸?shù)母怕蕿?,?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】
(1)由于函數(shù),得出,分類討論當(dāng)和時(shí),的正負(fù),進(jìn)而得出的單調(diào)性;(2)求出,令,得,設(shè),通過導(dǎo)函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時(shí),的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【詳解】解:(1)因?yàn)?,所以,①?dāng)時(shí),,在上單調(diào)遞減.②當(dāng)時(shí),令,則;令,則,所以在單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.(2)因?yàn)椋芍?,,令,?設(shè),則.當(dāng)時(shí),,在上單調(diào)遞增,所以在上的值域是,即.當(dāng)時(shí),沒有實(shí)根,且,在上單調(diào)遞減,,符合題意.當(dāng)時(shí),,所以有唯一實(shí)根,當(dāng)時(shí),,在上單調(diào)遞增,,不符合題意.綜上,,即的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和根據(jù)恒成立問題求參數(shù)范圍,還運(yùn)用了構(gòu)造函數(shù)法,還考查分類討論思想和計(jì)算能力,屬于難題.18、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當(dāng)時(shí),由,解得;當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得.所以不等式的解集為.(Ⅱ)因?yàn)?,所?由題意知對,,即,因?yàn)?,所以,解?【點(diǎn)睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號(hào),把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對值定義法;②平方法;③零點(diǎn)區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進(jìn)而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.19、(1)(2)【解析】
(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進(jìn)而求得點(diǎn)的坐標(biāo),結(jié)合弦長即可求得拋物線的方程;(2)設(shè)直線的方程,運(yùn)用韋達(dá)定理可得,可得之間的關(guān)系,再運(yùn)用進(jìn)行裂項(xiàng),可求得,解不等式求得的值.【詳解】解:(1)設(shè)過拋物線焦點(diǎn)的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.【點(diǎn)睛】本題考查了直線與拋物線的關(guān)系,考查了韋達(dá)定理和運(yùn)用裂項(xiàng)法求數(shù)列的和,考查了運(yùn)算能力,屬于中檔題.20、(1);(2)或【解析】試題分析:本題主要考查拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的相交問題、直線與圓相切問題等基礎(chǔ)知識(shí),同時(shí)考查考生的分析問題解決問題的能力、轉(zhuǎn)化能力、運(yùn)算求解能力以及數(shù)形結(jié)合思想.第一問,設(shè)出直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理得到y(tǒng)1+y2,y1y2,,代入到中解出P的值;第二問,結(jié)合第一問的過程,利用兩種方法求出的長,聯(lián)立解出m的值,從而得到直線的方程.試題解析:(Ⅰ)設(shè)l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)設(shè)A(x1,y1),B(x2,y2),則y1+y2=2pm,y1y2=4p,則.因?yàn)椋詘1x2+y1y2=12,即4+4p=12,得p=2,拋物線的方程為y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化為y2-4my+2=1.y1+y2=4m,y1y2=2.…6分設(shè)AB的中點(diǎn)為M,則|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直線l的方程為,或.…12分考點(diǎn):拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的相交問題、直線與圓相切問題.21、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】
(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進(jìn)而得到函數(shù)的極值;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 剪發(fā)服務(wù)合同范例
- 土地出租養(yǎng)魚合同范例
- 播控新紀(jì)元:挑戰(zhàn)與突破
- 共享電梯轉(zhuǎn)讓合同范例
- 國企產(chǎn)品采購合同模板
- 安裝合同范例簡易
- 廢棄項(xiàng)目合同模板
- 大學(xué)班干部工作總結(jié)(修正版)
- 《兒科臨床輸血進(jìn)展》課件
- 醫(yī)院聘用醫(yī)生合同范例
- 2018年江蘇高考滿分作文:在母語的屋檐下
- 《輸血和血型》的教學(xué)設(shè)計(jì)
- 新青島版五四制2021-2022四年級(jí)科學(xué)上冊實(shí)驗(yàn)指導(dǎo)
- 小學(xué)四年級(jí)音樂課程標(biāo)準(zhǔn)
- 民用機(jī)場竣工驗(yàn)收質(zhì)量評(píng)定標(biāo)準(zhǔn)
- 汽車應(yīng)急啟動(dòng)電源項(xiàng)目商業(yè)計(jì)劃書寫作范文
- 雙向細(xì)目表和單元測試卷及組卷說明
- 離子色譜法測定空氣中二氧化硫
- 水蒸汽熱力性質(zhì)表
- 兩癌篩查質(zhì)控評(píng)估方案
- 汽車污染途徑及其控制措施畢業(yè)論文
評(píng)論
0/150
提交評(píng)論