版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年浙江長征職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.2.下列給變量賦值的語句正確的是()
A.5=a
B.a(chǎn)+2=a
C.a(chǎn)=b=4
D.a(chǎn)=2*a答案:D3.設a1,a2,…,an為實數(shù),證明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:證明:不妨設a1≤a2≤…≤an,則由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.將上述n個式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式兩邊除以n2,并開方可得:a1+a2+…+ann≤a21+a22+…+a2nn.4.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.
答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.5.直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為______.答案:由函數(shù)定義知當函數(shù)在x=1處有定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為1,若函數(shù)在x=1處有無定義時,直線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點的個數(shù)為0或1故為0或16.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.7.將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應的函數(shù)解析式.答案:函數(shù)解析式是解析:將函數(shù)進行平移,使得到的圖形與拋物線的兩個交點關(guān)于原點對稱,試求平移后的圖形對應的函數(shù)解析式.8.(理科)若隨機變量ξ~N(2,22),則D(14ξ)的值為______.答案:解;∵隨機變量ξ服從正態(tài)分布ξ~N(2,22),∴可得隨機變量ξ方差是4,∴D(14ξ)的值為142D(ξ)=142×4=14.故為:14.9.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點,則k的值是()
A.
B.-
C.2
D.-2答案:B10.用數(shù)學歸納法證明“(n+1)(n+2)…(n+n)=2n?1?2?…?(2n-1)”(n∈N+)時,從“n=k到n=k+1”時,左邊應增添的式子是______.答案:當n=k時,左邊等于(k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),當n=k+1時,左邊等于(k+2)(k+3)…(k+k)(2k+1)(2k+2),故從“k”到“k+1”的證明,左邊需增添的代數(shù)式是(2k+1)(2k+2)(k+1)=2(2k+1),故為:2(2k+1).11.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.12.過點(1,0)且與直線x-2y-2=0平行的直線方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A13.函數(shù)f(x)的定義域為R+,若f(x+y)=f(x)+f(y),f(8)=3,則f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,則f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故選B.14.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量
(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量
(單位:千瓦時)低谷電價(單位:
元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.15.已知復數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個以z為根的實系數(shù)一元二次方程.答案:[解法一]∵復數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個一元二次方程可以是x2-6x+10=0.[解法二]設w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].16.點P(x0,y0)在圓x2+y2=r2內(nèi),則直線x0x+y0y=r2和已知圓的公共點的個數(shù)為(
)
A.0
B.1
C.2
D.不能確定答案:A17.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B18.下列函數(shù)中,既是偶函數(shù),又在(0,1)上單調(diào)遞增的函數(shù)是()A.y=|log3x|B.y=x3C.y=e|x|D.y=cos|x|答案:對于A選項,函數(shù)定義域是(0,+∞),故是非奇非偶函數(shù),不合題意,A選項不正確;對于B選項,函數(shù)y=x3是一個奇函數(shù),故不是正確選項;對于C選項,函數(shù)的定義域是R,是偶函數(shù),且當x∈(0,+∞)時,函數(shù)是增函數(shù),故在(0,1)上單調(diào)遞增,符合題意,故C選項正確;對于D選項,函數(shù)y=cos|x|是偶函數(shù),在(0,1)上單調(diào)遞減,不合題意綜上知,C選項是正確選項故選C19.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當a>1時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當1>a>0時,函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得
a=12.綜上,a的值為12或32故選C.20.在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實施時必須相鄰,請問實驗順序的編排方法共有()
A.24種
B.48種
C.96種
D.144種答案:C21.拋擲3顆質(zhì)地均勻的骰子,求點數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點數(shù)和為8的事件包含了向上的點的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點數(shù)和為8的事件的概率是15216=572故為:572.22.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應的元素是4,集合A中還有兩個元素2和3,2可以和4對應,也可以和5對應,3可以和4對應,也可以和5對應,每個元素有兩種不同的對應,∴共有2×2=4種結(jié)果,故選B.23.有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D24.已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標軸圍成的三角形的面積=______.答案:由題意知,點A在圓上,切線斜率為-1KOA=-121=-12,用點斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標軸上的截距分別是5和52,所以,所求面積為12×52×5=254.25.
已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()
A.
B.
C.
D.答案:D26.若雙曲線與橢圓x216+y225=1有相同的焦點,與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)27.如圖所示,有兩個獨立的轉(zhuǎn)盤(A)、(B),其中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤玩游戲,規(guī)則是:依次隨機轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機停下(指針固定不動,當指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始)為一次游戲,記轉(zhuǎn)盤(A)指針所對的數(shù)為X轉(zhuǎn)盤(B)指針對的數(shù)為Y設X+Yξ,每次游戲得到的獎勵分為ξ分.
(1)求X<2且Y>1時的概率
(2)某人玩12次游戲,求他平均可以得到多少獎勵分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎勵分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎勵分為12×Eξ=50.28.在平面直角坐標系內(nèi)第二象限的點組成的集合為______.答案:∵平面直角坐標系內(nèi)第二象限的點,橫坐標小于0,縱坐標大于0,∴在平面直角坐標系內(nèi)第二象限的點組成的集合為{(x,y)|x<0且y>0},故為:{(x,y)|x<0且y>0}.29.過點A(0,2),且與拋物線C:y2=6x只有一個公共點的直線l有()條.A.1B.2C.3D.4答案:∵點A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個公共點的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對稱軸平行,故選C.30.已知拋物線y2=4x的焦點為F,準線與x軸的交點為M,N為拋物線上的一點,且|NF|=32|MN|,則∠NMF=()A.π6B.π4C.π3D.5π12答案:設N到準線的距離等于d,由拋物線的定義可得d=|NF|,
由題意得cos∠NMF=d|MN|=|NF||MN|=32,∴∠NMF=π6,故選A.31.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點,則該函數(shù)的所有零點之和為()A.4B.2C.1D.0答案:因為函數(shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個交點,所以四個交點關(guān)于y軸對稱,不妨設四個交點的橫坐標為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.32.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或633.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B34.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3235.(坐標系與參數(shù)方程選做題)在極坐標系中,點M(ρ,θ)關(guān)于極點的對稱點的極坐標是______.答案:由點的極坐標的意義可得,點M(ρ,θ)關(guān)于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關(guān)于極點的對稱點的極坐標是(ρ,π+θ),故為(ρ,π+θ).36.已知兩個非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個數(shù)為7若A={1,2,}或{1,3}或{2,3}時,集合B中至少有一個元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個數(shù)為4×3=12若A={1}或{3}或{2}時集合中至少有二個元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個數(shù)是7+12+6=25故選C37.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.38.直線x3+y4=t被兩坐標軸截得的線段長度為1,則t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1539.△ABC所在平面內(nèi)點O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設BC的中點為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點P的軌跡一定經(jīng)過△ABC的重心故選A.40.已知橢圓的參數(shù)方程為(?為參數(shù)),點M在橢圓上,點O為原點,則當?=時,OM的斜率為()
A.1
B.2
C.
D.2答案:D41.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當0<a<1時函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當a>1時函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.42.定義集合運算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},設集合A={0,1},B={2,3},則集合A⊙B的所有元素之和為()A.0B.6C.12D.18答案:當x=0時,z=0,當x=1,y=2時,z=6,當x=1,y=3時,z=12,故所有元素之和為18,故選D43.設=(3,4),=(sinα,cosα),且⊥,則tanα的值為()
A.
B.-
C.
D.-答案:D44.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B45.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點,則實數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過點M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點,則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.46.不等式|x+3|-|x-1|≤a2-3a對任意實數(shù)x恒成立,則實數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A47.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個函數(shù)與函數(shù)y=x
(x≥0)有相同圖象時,這兩個函數(shù)應是同一個函數(shù).A中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).B中的函數(shù)和函數(shù)y=x
(x≥0)具有相同的定義域、值域、對應關(guān)系,故是同一個函數(shù).C中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個函數(shù).D中的函數(shù)和函數(shù)y=x
(x≥0)的定義域不同,故不是同一個函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x
(x≥0)是同一個函數(shù),具有相同的圖象,故選B.48.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大小;
(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O為原點,CB、AF、OE所在直線為坐標軸,建立空間直角坐標系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=
==-.設異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.49.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).50.如圖,在復平面內(nèi),點A表示復數(shù)z的共軛復數(shù),則復數(shù)z對應的點是()A.AB.BC.CD.D答案:兩個復數(shù)是共軛復數(shù),兩個復數(shù)的實部相同,下部相反,對應的點關(guān)于x軸對稱.所以點A表示復數(shù)z的共軛復數(shù)的點是B.故選B.第2卷一.綜合題(共50題)1.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標準方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標準方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.2.當太陽光線與水平面的傾斜角為60°時,要使一根長為2m的細桿的影子最長,則細桿與水平地面所成的角為()
A.15°
B.30°
C.45°
D.60°答案:B3.設隨機變量x~B(n,p),若Ex=2.4,Dx=1.44則()
A.n=4,p=0.6
B.n=6,p=0.4
C.n=8,p=0.3
D.n=24,p=0.1答案:B4.當圓x=4cosθy=4sinθ上一點P的旋轉(zhuǎn)角為θ=23π時,點P的坐標為______.答案:根據(jù)圓的參數(shù)方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉(zhuǎn)角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).5.已知向量i=(1,0),j=(0,1).若向量i+λj與λi+j垂直,則實數(shù)λ=______.答案:由題意可得,i+λj=(1,λ),λi+j=(λ,1)∵i+λj與λi+j垂直(i+λj)?(λi+j)=2λ=0∴λ=0故為:06.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()
A.大前提錯導致結(jié)論錯
B.小前提錯導致結(jié)論錯
C.推理形式錯導致結(jié)論錯
D.大前提和小前提都錯導致結(jié)論錯答案:A7.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;
②若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過b有且只有一個平面與a垂直.
上述四個命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時,不能得出直線與這個平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯誤;②垂直于這條直線的直線與這個平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個平面與a垂直,顯然正確.故選D.8.已知正四棱柱的對角線的長為6,且對角線與底面所成角的余弦值為33,則該正四棱柱的體積等于______.答案::如圖可知:∵AC1=6,cos∠AC1A1=33∴A1C1=2,AA1=2∴正四棱柱的體積等于A1B12?AA1=2故為:29.雙曲線的中心在坐標原點,離心率等于2,一個焦點的坐標為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個焦點的坐標為(2,0),∴ca=2,
c=2且焦點在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進方程為y=±3x.故為y=±3x10.已知正數(shù)x,y,z滿足5x+4y+3z=10.
(1)求證:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根據(jù)柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因為5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據(jù)均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當且僅當x2=y2+z2時,等號成立.根據(jù)柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,當且僅當x5=y4=z3時,等號成立.綜上,9x2+9y2+z2≥2?32=18.11.把函數(shù)y=sin(x-)-2的圖象經(jīng)過按平移得到y(tǒng)=sinx的圖象,則=(
)
A.
B.
C.
D.答案:A12.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數(shù)解,求a的值.答案:設方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-313.某學校為了了解學生的日平均睡眠時間(單位:h),隨機選擇了n名同學進行調(diào)查,下表是這n名同學的日平均睡眠時間的頻率分布表:
序號(i)分組(睡眠時間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如[4,5)的中點值4.5)作為代表.若據(jù)此計算的這n名學生的日平均睡眠時間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)14.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A15.袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.16.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()
A.橢圓
B.AB所在直線
C.線段AB
D.無軌跡答案:C17.如圖,點O是平行六面體ABCD-A1B1C1D1的對角線BD1與A1C的交點,=,=,=,則=()
A.++
B.++
C.--+
D.+-
答案:C18.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,則時速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時速在[60,70]的汽車大約有200×0.4=80故選B.19.在等腰直角三角形ABC中,若M是斜邊AB上的點,則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當點M位于線段AC內(nèi)時,AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.20.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.21.設x,y∈R,且滿足x2+y2=1,求x+y的最大值為()
A.
B.
C.2
D.1答案:A22.鐵路托運行李,從甲地到乙地,按規(guī)定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:23.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負相關(guān)
C.變量x與y負相關(guān),u與v正相關(guān)
D.變量x與y負相關(guān),u與v負相關(guān)答案:C24.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.25.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(
)
A.
B.
C.
D.答案:A26.已知定直線l及定點A(A不在l上),n為過點A且垂直于l的直線,設N為l上任意一點,線段AN的垂直平分線交n于B,點B關(guān)于AN的對稱點為P,求證:點P的軌跡為拋物線.答案:證明:如圖所示,建立平面直角坐標系,并且連結(jié)PA,PN,NB.由題意知PB垂直平分AN,且點B關(guān)于AN的對稱點為P,∴AN也垂直平分PB.∴四邊形PABN為菱形,∴PA=PN.∵AB⊥l,∴PN⊥l.故點P符合拋物線上點的條件:到定點A的距離和到定直線l的距離相等,∴點P的軌跡為拋物線.27.已知雙曲線的兩漸近線方程為y=±32x,一個焦點坐標為(0,-26),
(1)求此雙曲線方程;
(2)寫出雙曲線的準線方程和準線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標準方程為y218-x28=1.(2)由(1)得,雙曲線的準線方程為y=±1826x;準線間的距離為2a2c=2×1826=182613.28.“a=2”是“直線ax+2y=0平行于直線x+y=1”的()
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件答案:C29.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C30.△ABC內(nèi)接于以O為圓心的圓,且∠AOB=60°.則∠C=______.答案:∵△ABC內(nèi)接于以O為圓心的圓,∴∠C=12∠AOB,∵∠AOB=60°∴∠C=12×60°=30°故為30°.31.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C32.若關(guān)于x的方程x2-2ax+2+a=0有兩個不相等的實根,求分別滿足下列條件的a的取值范圍.
(1)方程兩根都大于1;
(2)方程一根大于1,另一根小于1。答案:解:設f(x)=x2-2ax+2+a,(1)∵兩根都大于1,∴,解得:2<a<3;(2)∵方程一根大于1,一根小于1,∴f(1)<0,∴a>3。33.若直線l:ax+by=1與圓C:x2+y2=1有兩個不同交點,則點P(a,b)與圓C的位置關(guān)系是(
)
A.點在圓上
B.點在圓內(nèi)
C.點在圓外
D.不能確定答案:C34.設直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C35.(文科做)
f(x)=1x
(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時,f(x)=1x≥13,解得x∈?;x≥0時,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.36.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B37.已知△ABC和點M滿足.若存在實數(shù)使得成立,則m=()
A.2
B.3
C.4
D.5答案:B38.現(xiàn)有10個保送上大學的名額,分配給7所學校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.39.對任意的實數(shù)k,直線y=kx+1與圓x2+y2=2
的位置關(guān)系一定是()
A.相離
B.相切
C.相交但直線不過圓心
D.相交且直線過圓心答案:C40.拋擲兩個骰子,若至少有一個1點或一個6點出現(xiàn),就說這次試驗失?。敲?,在3次試驗中成功2次的概率為()
A.
B.
C.
D.答案:D41.由9個正數(shù)組成的矩陣
中,每行中的三個數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個數(shù)之和等于9,則a22≥1.其中正確的個數(shù)有()
A.1個
B.2個
C.3個
D.4個答案:B42.三個數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.43.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為______.答案:設A(a,0)、B(0,b),a>0,b>0,AB方程為xa+
yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8
(當且僅當a=4,b=2時,等號成立),故三角形OAB面積S=12
ab≥4,故為4.44.甲、乙兩位同學都參加了由學校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標準差分別為5.09和3.72,則甲、乙兩同學在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()
A.甲
B.乙
C.甲、乙相同
D.不能確定答案:B45.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.46.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當1+ab<0時,∵>0,∴不等式1+ab<成立.從而原不等式成立.當1+ab≥0時,要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.47.設一次試驗成功的概率為p,進行100次獨立重復試驗,當p=______時,成功次數(shù)的標準差的值最大,其最大值為______.答案:由獨立重復試驗的方差公式可以得到Dξ=npq≤n(p+q2)2=n4,等號在p=q=12時成立,∴Dξ=100×12×12=25,σξ=25=5.故為:12;548.若直線l過拋物線y=ax2(a>0)的焦點,并且與y軸垂直,若l被拋物線截得的線段長為4,則a=______.答案:拋物線方程整理得x2=1ay,焦點(0,14a)l被拋物線截得的線段長即為通徑長1a,故1a=4,a=14;故為14.49.已知直線l經(jīng)過點P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時與l1、l2的交點分別為A′(3,-4)或B′(3,-9),截得的線段AB的長|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長為5,設直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點P(3,1),故直線l的方程為:x=3或y=1.解法三:設直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.50.設D為△ABC的邊AB上一點,P為△ABC內(nèi)一點,且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.第3卷一.綜合題(共50題)1.已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且
則滿足條件的函數(shù)f(x)有()
A.6個
B.10個
C.12個
D.16個答案:C2.已知原點O(0,0),則點O到直線4x+3y+5=0的距離等于
______.答案:利用點到直線的距離公式得到d=|5|42+32=1,故為1.3.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關(guān),u與v正相關(guān)
B.變量x與y正相關(guān),u與v負相關(guān)
C.變量x與y負相關(guān),u與v正相關(guān)
D.變量x與y負相關(guān),u與v負相關(guān)答案:C4.設A、B、C、D是半徑為r的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B5.設隨機變量ζ~N(2,p),隨機變量η~N(3,p),若,則P(η≥1)=()
A.
B.
C.
D.答案:D6.算法框圖中表示判斷的是()A.
B.
C.
D.
答案:∵在算法框圖中,表示判斷的是菱形,故選B.7.讀下面的程序:
上面的程序在執(zhí)行時如果輸入6,那么輸出的結(jié)果為()
A.6
B.720
C.120
D.1答案:B8.三個數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.9.有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標有字母A、3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規(guī)則進行:先在第一號盒子中任取一球,若取得標有字母A的球,則在第二號盒子中任取一個球;若第一次取得標有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為()
A.0.59
B.0.54
C.0.8
D.0.15答案:A10.使關(guān)于的不等式有解的實數(shù)的最大值是(
)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。11.已知平面向量.a,b的夾角為60°,.a=(3,1),|b|=1,則|.a+2b|=______.答案:∵平面向量.a,b的夾角為60°,.a=(3,1),∴|.a|=2.b2
再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故為23.12.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()
A.
B.
C.±
D.±答案:C13.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因為f(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.14.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調(diào)查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調(diào)查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.15.某廠2011年的產(chǎn)值為a萬元,預計產(chǎn)值每年以7%的速度增加,則該廠到2022年的產(chǎn)值為______萬元.答案:2011年產(chǎn)值為a,增長率為7%,2012年產(chǎn)值為a+a×7%=a(1+7%),2013年產(chǎn)值為a(1+7%)+a(1+7%)×7%=a(1+7%)2,…,2022年的產(chǎn)值為a(1+7%)11.故為:a(1+7%)11.16.已知圓的方程是(x-2)2+(y-3)2=4,則點P(3,2)滿足()
A.是圓心
B.在圓上
C.在圓內(nèi)
D.在圓外答案:C17.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2010的坐標為______.答案:A=1011,B=20AA=1011
1011
=1021A3=111
121
=1031依此類推A2009=1020101∴A2009B=1020101
20=24018∴OP2010的坐標為(2,4018)故為:(2,4018)18.橢圓x29+y216=1上一動點P到兩焦點距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知動點P到兩焦點距離之和為2a=8,故選B.19.一位運動員投擲鉛球的成績是14m,當鉛球運行的水平距離是6m時,達到最大高度4m.若鉛球運行的路線是拋物線,則鉛球出手時距地面的高度是()
A.2.25m
B.2.15m
C.1.85m
D.1.75m
答案:D20.選做題
已知拋物線,過原點O直線與交于兩點。
(1)求的最小值;
(2)求的值答案:解:設直線的參數(shù)方程為與拋物線方程
聯(lián)立得21.下列函數(shù)圖象中,正確的是()
A.
B.
C.
D.
答案:C22.已知雙曲線x2-y22=1,經(jīng)過點M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點,若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設過點M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當k存在時有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個不同的根是兩交點A、B的橫坐標∴x1+x2=2(k-k2)2-k2
又M(1,1)為線段AB的中點∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當k=2時,方程(1)無實數(shù)解故過點m(1,1)與雙曲線交于兩點A、B且M為線段AB中點的直線不存在.(2)當x=1時,直線經(jīng)過點M但不滿足條件,綜上,符合條件的直線l不存在23.隋機變量X~B(6,),則P(X=3)=()
A.
B.
C.
D.答案:C24.已知x1>0,x1≠1,且xn+1=xn(x2n+3)3x2n+1,(n=1,2,…).試證:數(shù)列{xn}或者對任意自然數(shù)n都滿足xn<xn+1,或者對任意自然數(shù)n都滿足xn>xn+1.答案:證:首先,xn+1-xn=xn(x2n+3)3x2n+1-xn=2xn(1-x2n)3x2n+1,由于x1>0,由數(shù)列{xn}的定義可知xn>0,(n=1,2,…)所以,xn+1-xn與1-xn2的符號相同.①假定x1<1,我們用數(shù)學歸納法證明1-xn2>0(n∈N)顯然,n=1時,1-x12>0設n=k時1-xk2>0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2>0,因此,對一切自然數(shù)n都有1-xn2>0,從而對一切自然數(shù)n都有xn<xn+1②若x1>1,當n=1時,1-x12<0;設n=k時1-xk2<0,那么當n=k+1時1-x2k+1=1-[xk(x2k+3)3x2k+1]2=(1-x2k)3(3x2k+1)2<0,因此,對一切自然數(shù)n都有1-xn2<0,從而對一切自然數(shù)n都有xn>xn+125.設點P(+,1)(t>0),則||(O為坐標原點)的最小值是()
A.
B.
C.5
D.3答案:A26.如圖,l1,l2,l3是同一平面內(nèi)的三條平行直線,l1與l2間的距離是1,l3與l2間的距離是2,正△ABC的三頂點分別在l1,l2,l3上,則△ABC的邊長是______.答案:如圖,過A,C作AE,CF垂直于L2,點E,F(xiàn)是垂足,將Rt△BCF繞點B逆時針旋轉(zhuǎn)60°至Rt△BAD處,延長DA交L2于點G.由作圖可知:∠DBG=60°,AD=CF=2.在Rt△BDG中,∠BGD=30°.在Rt△AEG中,∠EAG=60°,AE=1,AG=2,DG=4.∴BD=433在Rt△ABD中,AB=BD2+AD2=2213故為:221327.設非零向量、、滿足||=||=||,+=,則<,>=()
A.150°
B.120°
C.60°
D.30°答案:B28.若對n個向量a1,a2,…,an,存在n個不全為零的實數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,129.設d1與d2都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關(guān)于d1與d2的敘述正確的是()A.d1=d2B.d1與d2同向C.d1∥d2D.d1與d2有相同的位置向量答案:根據(jù)直線的方向向量定義,把直線上的非零向量以及與之共線的非零向量叫做直線的方向向量.因此,線Ax+By+C=0(AB≠0)的方向向量都應該是共線的故選C.30.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<0)=0.2,則P(ξ>4)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:D31.下表是關(guān)于某設備的使用年限(年)和所需要的維修費用y(萬元)的幾組統(tǒng)計數(shù)據(jù):
x23456y2.23.85.56.57.0(1)請在給出的坐標系中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y=
bx+
a;
(3)估計使用年限為10年時,維修費用為多少?
(參考數(shù)值:2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3).答案:(1)根據(jù)所給的數(shù)據(jù),得到對應的點的坐標,寫出點的坐標,在坐標系描出點,得到散點圖,(2)∵5i=1xi2=4+9+16+25+36=90
且.x=4,.y=5,n=5,∴?b=112.3-5×4×590-5×16=12.310=1.23?a=5-1.23×4=0.08∴回歸直線為y=1.23x+0.08.(3)當x=10時,y=1.23×10+0.08=12.38,所以估計當使用10年時,維修費用約為12.38萬元.32.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標方程為ρ=2cosθ+4sinθ.
(I)求直線的普通方程和圓的直角坐標方程;
(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)33.已知F1(-8,3),F(xiàn)2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應是一條射線.故為一條射線.34.某賽季,甲、乙兩名籃球運動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示,則甲、乙兩名運動員得分的平均數(shù)分別為()A.14、12B.13、12C.14、13D.12、14答案:.x甲=8+9+6+15+17+19+247=14,.x乙=8+5+7+11+13+15+257=12.故選A.35.直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),則k的取值范圍是
______.答案:聯(lián)立兩直線方程得kx-y=k-1①ky=x+2k②,由②得y=x+2kk③,把③代入①得:kx-x+2kk=k-1,當k+1≠0即k≠-1時,解得x=kk-1,把x=kk-1代入③得到y(tǒng)=2k-1k-1,所以交點坐標為(kk-1,2k-1k-1)因為直線kx-y=k-1與直線ky=x+2k的交點在第二象限內(nèi),得kk-1<02k-1k-1>
0解得0<k<1,k>1或k<12,所以不等式組的解集為0<k<12則k的取值范圍是0<k<12故為:0<k<1236.下列命題錯誤的是(
)A.命題“若,則中至少有一個為零”的否定是:“若,則都不為零”。B.對于命題,使得;則是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河北建筑安全員-A證考試題庫附答案
- DB32T-食品安全督導工作規(guī)范編制說明
- 三個共點力的動態(tài)平衡
- 單位人力資源管理制度精彩大合集十篇
- 公用事業(yè)行業(yè)十二月行業(yè)動態(tài)報告:水電發(fā)電量降幅收窄風光核裝機目標明確
- 江蘇省連云港市海州區(qū)2024-2025學年八年級上學期期末考試生物學試卷(含答案)
- 單位管理制度展示合集【職員管理篇】十篇
- 年產(chǎn)5000臺液晶電視項目可行性研究報告建議書
- 單位管理制度展示選集人力資源管理篇
- 單位管理制度品讀選集人員管理篇十篇
- 機動車維修竣工出廠合格證
- 陜西延長石油精原煤化工有限公司 60 萬噸 - 年蘭炭綜合利用項目 ( 一期 30 萬噸 - 年蘭炭、1 萬噸 - 年金屬鎂生產(chǎn)線)竣工環(huán)境保護驗收調(diào)查報告
- 大病救助申請書
- 法學概論-課件
- 廈門物業(yè)管理若干規(guī)定
- 外科護理學試題+答案
- 齊魯醫(yī)學屈光和屈光不正匯編
- 貨架的技術(shù)說明(一)
- 【高等數(shù)學練習題】皖西學院專升本自考真題匯總(附答案解析)
- 高處作業(yè)安全技術(shù)交底-
- 工抵房協(xié)議模板
評論
0/150
提交評論