版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年許昌職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.直線2x-y=7與直線3x+2y-7=0的交點是()
A.(3,-1)
B.(-1,3)
C.(-3,-1)
D.(3,1)答案:A2.點M的直角坐標(biāo)為(,1,-2),則它的柱坐標(biāo)為()
A.(2,,2)
B.(2,,2)
C.(2,,-2)
D.(2,-,-2)答案:C3.從5名男學(xué)生、3名女學(xué)生中選3人參加某項知識對抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個分類計數(shù)問題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時,有C32C51=15種結(jié)果,當(dāng)包括兩男一女時,有C31C52=30種結(jié)果,∴根據(jù)分類加法得到共有15+30=45故選A.4.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉(zhuǎn)600到OD,則PD的長為()
A.3
B.
C.
D.
答案:D5.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C6.若a、b是直線,α、β是平面,a⊥α,b⊥β,向量m在a上,向量n在b上,m=(0,3,4),n=(3,4,0),則α、β所成二面角中較小的一個余弦值為______.答案:由題意,∵m=(0,3,4),n=(3,4,0),∵cos<m,n>=m?n|m||n|=125?5=1225∵a⊥α,b⊥β,向量m在a上,向量n在b上,∴α、β所成二面角中較小的一個余弦值為1225故為12257.已知a、b、c是實數(shù),且a2+b2+c2=1,求2a+b+2c的最大值.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(22+1+22)≥(2a+b+2c)2故(2a+b+2c)2≤9,即2a+b+2c≤3即2a+b+2c的最大值為3.8.如圖,在⊙O中,弦CD垂直于直徑AB,求證:CBCO=CDCA.答案:證明:連接AD,如圖所示:由垂徑定理得:AD=AC又∵OC=OB∴∠ADC=∠OBC=∠ACD=∠OCB∴△CAD∽△COB∴CBCO=CDCA.9.某學(xué)校為了解高一男生的百米成績,隨機抽取了50人進行調(diào)查,如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.
答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內(nèi)的頻率為:0.7,因為根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.10.中心在原點,焦點在x軸上的雙曲線的一條漸近線經(jīng)過點(4,2),則它的離心率為()
A.
B.
C.
D.答案:D11.若f(x)在定義域[a,b]上有定義,則在該區(qū)間上()A.一定連續(xù)B.一定不連續(xù)C.可能連續(xù)也可能不連續(xù)D.以上均不正確答案:f(x)有定義是f(x)在區(qū)間上連續(xù)的必要而不充分條件.有定義不一定連續(xù).還需加上極限存在才能推出連續(xù).故選C.12.在極坐標(biāo)系中,直線l經(jīng)過圓ρ=2cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標(biāo)為______.答案:由ρ=2cosθ可知此圓的圓心為(1,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標(biāo)方程為ρcosθ=1,所以直線l與極軸的交點的極坐標(biāo)為(1,0).故為:(1,0).13.已知f(x)=2x,g(x)=3x.
(1)當(dāng)x為何值時,f(x)=g(x)?
(2)當(dāng)x為何值時,f(x)>1?f(x)=1?f(x)<1?
(3)當(dāng)x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當(dāng)x=0時,f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時,f(x)>1;當(dāng)x=0時,f(x)=1;當(dāng)x<0時,f(x)<1.(3)由圖可知:當(dāng)x>1時,g(x)>3;當(dāng)x=1時,g(x)=3;當(dāng)x<1時,g(x)<3.14.若關(guān)于的不等式的解集是,則的值為_______答案:-2解析:原不等式,結(jié)合題意畫出圖可知.15.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,寫出點E的坐標(biāo);
(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.答案:(1)點E的坐標(biāo)是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設(shè)P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標(biāo)是(1,1,1).(2)∵F∈平面PAD,∴可設(shè)F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標(biāo)為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.16.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.17.按ABO血型系統(tǒng)學(xué)說,每個人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時,子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D18.圓錐曲線G的一個焦點是F,與之對應(yīng)的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關(guān)系決定G
是何種曲線之間的關(guān)系是:______
圓M與的位置相離相切相交G
是何種曲線答案:設(shè)圓錐曲線過焦點F的弦為AB,過A、B分別向相應(yīng)的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2
?
e.設(shè)以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率
0<e<1,此時r<d,圓M與準線相離;拋物線的離心率
e=1,此時r=d,圓M與準線相切;雙曲線的離心率
e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.19.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)20.設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是()A.n>m>pB.m>p>nC.m>n>pD.p>m>n答案:取a=0.5,則a2+1、a+1、2a的大小分別為:1.25,1.5,1,又因為0<a<1時,y=logax為減函數(shù),所以p>m>n故選D21.化簡的結(jié)果是()
A.a(chǎn)2
B.a(chǎn)
C.a(chǎn)
D.a(chǎn)答案:C22.設(shè)集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.23.在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(-1,1),若取原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項中,不是點P極坐標(biāo)的是()
A.()
B.()
C.()
D.()答案:D24.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A25.設(shè)F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,則點P的縱坐標(biāo)為______.答案:由題意,P是第一象限內(nèi)該橢圓上的一點,且P、F1、F2三點構(gòu)成一直角三角形,故可分為兩類:①當(dāng)∠P為直角時,設(shè)P的縱坐標(biāo)為y,則F1,F(xiàn)2分別是橢圓x24+y2=1的左、右焦點∴|PF1|+|PF2|=4,|F1F2|=23∵∠P為直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②當(dāng)∠PF2F1為直角時,P的橫坐標(biāo)為3設(shè)P的縱坐標(biāo)為y(y>0),則(3)24+y2=1,∴y=12故為:33
或1226.已知定點A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點,若AP=2AM,試求動點P的軌跡C的方程.答案:設(shè)M(6+2cosθ,2sinθ),動點(x,y)由AP=2AM,即M為線段AP的中點故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點P的軌跡C的方程為x2+y2=1627.下列命題錯誤的是(
)A.命題“若,則中至少有一個為零”的否定是:“若,則都不為零”。B.對于命題,使得;則是,均有。C.命題“若,則方程有實根”的逆否命題為:“若方程無實根,則”。D.“”是“”的充分不必要條件。答案:A解析:命題的否定是只否定結(jié)論,∴選A.28.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.29.“sinx=siny”是“x=y”的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要條件答案:∵“sinx=siny”不能推出“x=y”,例如sin30°=sin390°,但30°≠390°,即充分性不成立;反過來,若“x=y”,一定有“sinx=siny”,即必要性成立;∴“sinx=siny”是“x=y”的必要不充分條件.故選C.30.曲線的參數(shù)方程為(t是參數(shù)),則曲線是(
)
A.線段
B.雙曲線的一支
C.圓
D.射線答案:D31.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時,等號成立.32.關(guān)于x的不等式(k2-2k+)x(k2-2k+)1-x的解集是()
A.x>
B.x<
C.x>2
D.x<2答案:B33.若矩陣A=
72
69
67
65
62
59
81
74
68
64
59
52
85
79
76
72
69
64
228
219
211
204
195
183
是表示我校2011屆學(xué)生高二上學(xué)期的期中成績矩陣,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含義如下:i=1表示語文成績,i=2表示數(shù)學(xué)成績,i=3表示英語成績,i=4表示語數(shù)外三門總分成績j=k,k∈N*表示第50k名分數(shù).若經(jīng)過一定量的努力,各科能前進的名次是一樣的.現(xiàn)小明的各科排名均在250左右,他想盡量提高三門總分分數(shù),那么他應(yīng)把努力方向主要放在哪一門學(xué)科上()
A.語文
B.?dāng)?shù)學(xué)
C.外語
D.都一樣答案:B34.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
(1)圖中與EF、CO共線的向量;
(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;35.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.36.方程y=ax+b和a2x2+y2=b2(a>b>1)在同一坐標(biāo)系中的圖形可能是()A.
B.
C.
D.
答案:∵a>b>1,∴方程y=ax+b的圖象與y軸交于y軸的正半軸,且函數(shù)是增函數(shù),由此排除選項B和D,∵a>b>1,a2x2+y2=b2?x2(ba)2+y2b2=1,∴橢圓焦點在y軸,由此排除A.故選C.37.設(shè)雙曲線的兩條漸近線為y=±x,則該雙曲線的離心率e為()
A.5
B.或
C.或
D.答案:C38.設(shè)A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實數(shù)a的取值范圍。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)當(dāng)a<-1時△<0
B=φA(2)當(dāng)a=-1時△=0
B={0}A(3)當(dāng)a>-1時△>0
要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=139.(選做題)
曲線(θ為參數(shù))與直線y=a有兩個公共點,則實數(shù)a的取值范圍是(
).答案:0<a≤140.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因為函數(shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.41.化簡的結(jié)果是()
A.a(chǎn)B.C.a(chǎn)2D.答案:B解析:分析:指數(shù)函數(shù)的性質(zhì)42.命題“若b≠3,則b2≠9”的逆命題是______.答案:根據(jù)“若p則q”的逆命題是“若q則p”,可得命題“若b≠3,則b2≠9”的逆命題是若b2≠9,則b≠3.故為:若b2≠9,則b≠3.43.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.44.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為
______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.45.如圖,PT是⊙O的切線,切點為T,直線PA與⊙O交于A、B兩點,∠TPA的平分線分別交直線TA、TB于D、E兩點,已知PT=2,PB=3,則PA=______,TEAD=______.答案:由題意,如圖可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分線分別交直線TA、TB于D、E兩點,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故為433,3246.一個口袋中有紅球3個,白球4個.
(Ⅰ)從中不放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,求恰好第2次中獎的概率;
(Ⅱ)從中有放回地摸球,每次摸2個,摸到的2個球中至少有1個紅球則中獎,連續(xù)摸4次,求中獎次數(shù)X的數(shù)學(xué)期望E(X).答案:(I)“恰好第2次中獎“即為“第一次摸到的2個白球,第二次至少有1個紅球”,其概率為C24C27×C23+C13C12C25=935;(II)摸一次中獎的概率為p=C23+C13C14C27=57,由條件知X~B(4,p),∴EX=np=4×57=207.47.已知a,b
,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.48.用系統(tǒng)抽樣法要從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126,則第1組中用抽簽的方法確定的號碼是______.答案:不妨設(shè)在第1組中隨機抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.故為:6.49.一位母親記錄了她的兒子3~9歲的身高數(shù)據(jù),并由此建立身高與年齡的回歸模型為y=7.19x+73.93,用這個模型預(yù)測她的兒子10歲時的身高,則正確的敘述是()A.身高一定是145.83
cmB.身高在145.83
cm以上C.身高在145.83
cm左右D.身高在145.83
cm以下答案:∵身高與年齡的回歸模型為y=7.19x+73.93.∴可以預(yù)報孩子10歲時的身高是y=7.19x+73.93.=7.19×10+73.93=145.83則她兒子10歲時的身高在145.83cm左右.故選C.50.用反證法證明命題“三角形中最多只有一個內(nèi)角是鈍角”時,則假設(shè)的內(nèi)容是()
A.三角形中有兩個內(nèi)角是鈍角
B.三角形中有三個內(nèi)角是鈍角
C.三角形中至少有兩個內(nèi)角是鈍角
D.三角形中沒有一個內(nèi)角是鈍角答案:C第2卷一.綜合題(共50題)1.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.2.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D3.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.4.探照燈反射鏡的縱斷面是拋物線的一部分,光源在拋物線的焦點,已知燈口直徑是60
cm,燈深40
cm,則光源到反射鏡頂點的距離是
______cm.答案:設(shè)拋物線方程為y2=2px(p>0),點(40,30)在拋物線y2=2px上,∴900=2p×40.∴p=454.∴p2=458.因此,光源到反射鏡頂點的距離為458cm.5.如圖,AB是⊙O的直徑,AD是⊙O的切線,點C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽Rt△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.6.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結(jié)論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無法確定
答案:B7.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C8.已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.
(ⅰ)求證:直線AB恒過一定點,并求出該定點的坐標(biāo);
(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標(biāo),若不存在,請說明理由.答案:(Ⅰ)曲線C的方程x2=4y(5分)(Ⅱ)(?。┰O(shè)E(a,-2),A(x1,x214),B(x2,x224),∵y=x24∴y′=12x過點A的拋物線切線方程為y-x214=12x1(x-x1),∵切線過E點,∴-2-x214=12x1(a-x1),整理得:x12-2ax1-8=0同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1?x2=-8可得AB中點為(a,a2+42)又kAB=y1-y2x1-x2=x214-x224x1-x2=x1+x24=a2,∴直線AB的方程為y-(a22+2)=a2(x-a)即y=a2x+2,∴AB過定點(0,2)(10分)(ⅱ)由(?。┲狝B中點N(a,a2+42),直線AB的方程為y=a2x+2當(dāng)a≠0時,則AB的中垂線方程為y-a2+42=-2a(x-a),∴AB的中垂線與直線y=-2的交點M(a3+12a4,-2)∴|MN|2=(a3+12a4-a)2+(-2-a2+42)2=116(a2+8)2(a2+4)∵|AB|=1+a24(x1+x2)2-4x1x2=(a2+4)(a2+8)若△ABM為等邊三角形,則|MN|=32|AB|,∴116(a2+8)2(a2+4)=34(a2+4)(a2+8),解得a2=4,∴a=±2,此時E(±2,-2),當(dāng)a=0時,經(jīng)檢驗不存在滿足條件的點E綜上可得:滿足條件的點E存在,坐標(biāo)為E(±2,-2).(15分)9.關(guān)于x的方程x2+4x+k=0有一個根為-2+3i(i為虛數(shù)單位),則實數(shù)k=______.答案:由韋達定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1310.對賦值語句的描述正確的是(
)
①可以給變量提供初值
②將表達式的值賦給變量
③可以給一個變量重復(fù)賦值
④不能給同一變量重復(fù)賦值A(chǔ).①②③B.①②C.②③④D.①②④答案:A解析:試題分析:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值。用來表明賦給某一個變量一個具體的確定值的語句叫做賦值語句。賦值語句的一般格式是:變量名=表達式其中“=”為賦值號.故選A。點評:簡單題,賦值語句的一般格式是:變量名=表達式其中"="為賦值號。11.已知函數(shù)f(x)=(12)x
x≥4
f(x+1)
x<4
則f(2+log23)的值為______.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故為12412.若點P分向量AB的比為34,則點A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.13.兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()
A.兩個球
B.兩個長方體
C.兩個圓柱
D.兩個圓錐答案:A14.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標(biāo)是______.答案:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設(shè)P的坐標(biāo)為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標(biāo)為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯(lián)立①②解得:a=b=2,則P的坐標(biāo)為(2,2).故為:(2,2)15.某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.16.x+y+z=1,則2x2+3y2+z2的最小值為()
A.1
B.
C.
D.答案:C17.已知適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,求p的值.答案:因為x的最大值為3,故x-3<0,原不等式等價于|x2-4x+p|-x+3≤5,(3分)即-x-2≤x2-4x+p≤x+2,則x2-5x+p-2≤0x2-3x+p+2≥0
解的最大值為3,(6分)設(shè)x2-5x+p-2=0
的根分別為x1和x2,x1<x2,x2-3x+p+2=0的根分別為x3和
x4,x3<x4.則x2=3,或x4=3.若x2=3,則9-15+p-2=0,p=8,若x4=3,則9-9+p+2=0,p=-2.當(dāng)p=-2時,原不等式無解,檢驗得:p=8
符合題意,故p=8.(12分)18.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為______.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).19.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.20.下列幾種說法正確的個數(shù)是()
①相等的角在直觀圖中對應(yīng)的角仍然相等;
②相等的線段在直觀圖中對應(yīng)的線段仍然相等;
③平行的線段在直觀圖中對應(yīng)的線段仍然平行;
④線段的中點在直觀圖中仍然是線段的中點.
A.1
B.2
C.3
D.4答案:B21.在空間直角坐標(biāo)系O-xyz中,點P(4,3,7)關(guān)于坐標(biāo)平面yOz的對稱點的坐標(biāo)為______.答案:設(shè)所求對稱點為P'(x,y,z)∵關(guān)于坐標(biāo)平面yOz的對稱的兩個點,它們的縱坐標(biāo)、豎坐標(biāo)相等,而橫坐標(biāo)互為相反數(shù),∴x=-4,y=3,z=7即P關(guān)于坐標(biāo)平面yOz的對稱點的坐標(biāo)為P'(-4,3,7)故為:(-4,3,7)22.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.23.已知拋物線C1:x2=2py(p>0)上縱坐標(biāo)為p的點到其焦點的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設(shè)拋物線C1在點A,B處的切線交于點M,
(?。┣簏cM的軌跡C2的方程;
(ⅱ)若點Q為(?。┲星€C2上的動點,當(dāng)直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數(shù)?若是,求出這個常數(shù);若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.
…(5分)(Ⅱ)(?。┰O(shè)過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2
(x<-22或x>22).…(10分)(ⅱ)設(shè)Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數(shù)2.
…(15分)24.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標(biāo)為______.答案:設(shè)點C(x,y)由重心坐標(biāo)公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標(biāo)為(5,3)故為(5,3)25.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調(diào)遞減∵logax>loga5∴0<x<5故為:(0,5)26.已知A(3,0),B(0,3),O為坐標(biāo)原點,點C在第一象限內(nèi),且∠AOC=60°,設(shè)OC=OA+λOB
(λ∈R),則λ等于()A.33B.3C.13D.3答案:∵OC=OC=OA+λOB(λ∈R),∠AOC=60°∴|λOB|=
3tan60°=33又∵|OB|=3∴λ=3故選D.27.對某種電子元件進行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C28.如果:在10進制中2004=4×100+0×101+0×102+2×103,那么類比:在5進制中數(shù)碼2004折合成十進制為()A.29B.254C.602D.2004答案:(2004)5=2×54+4=254.故選B.29.設(shè)a=log32,b=log23,c=,則()
A.c<b<a
B.a(chǎn)<c<b
C.c<a<b
D.b<c<a答案:C30.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______
時,方程的解集是有限集;滿足條件______
時,方程的解集是無限集;滿足條件______
時,方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數(shù)組解,方程的解集是無限集;滿足條件
a=0,b≠0
時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;
a=0,b≠0.31.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,
則r的坐標(biāo)為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-
3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)32.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進行排列,有A22種排法,再把A、B看成一個元素,和E進行排列,有A22種排法,最后再把C、D插入進去,有A23種排法,根據(jù)分步計數(shù)原理可得A22A22A23=24種排法.故為:2433.設(shè)O為坐標(biāo)原點,給定一個定點A(4,3),而點B(x,0)在x正半軸上移動,l(x)表示AB的長,則△OAB中兩邊長的比值的最大值為()
A.
B.
C.
D.答案:B34.用數(shù)學(xué)歸納法證明等式時,第一步驗證n=1時,左邊應(yīng)取的項是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D35.如圖是從甲、乙兩個班級各隨機選出9名同學(xué)進行測驗成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.36.已知直線l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點.
(1)若A,B的中點為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個三等分點,求直線l的直角坐標(biāo)方程.答案:(1)直線l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個三等分點,∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線l的直角坐標(biāo)方程y-1=4±76(x-2).37.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()
A.
B.
C.
D.2答案:C38.已知點A分BC所成的比為-13,則點B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點,且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.39.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(
)
A.-2
B.-1
C.0
D.1答案:B40.兩平行直線x+3y-4=0與2x+6y-9=0的距離是
______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102041.若向量的起點與終點M、A、B、C互不重合且無三點共線,且滿足下列關(guān)系(O為空間任一點),則能使向量成為空間一組基底的關(guān)系是()
A.
B.
C.
D.答案:C42.函數(shù)y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域為:[1,+∞).故為:[1,+∞).43.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-4)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是()
A.2-1
B.2-2
C.-1
D.-2答案:C44.已知f(x)=2x,g(x)=3x.
(1)當(dāng)x為何值時,f(x)=g(x)?
(2)當(dāng)x為何值時,f(x)>1?f(x)=1?f(x)<1?
(3)當(dāng)x為何值時,g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過點(0,1),且這兩個圖象只有一個公共點,∴當(dāng)x=0時,f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時,f(x)>1;當(dāng)x=0時,f(x)=1;當(dāng)x<0時,f(x)<1.(3)由圖可知:當(dāng)x>1時,g(x)>3;當(dāng)x=1時,g(x)=3;當(dāng)x<1時,g(x)<3.45.設(shè)點P對應(yīng)的復(fù)數(shù)為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標(biāo)系,則點P的極坐標(biāo)為()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A46.設(shè)雙曲線的焦點在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C47.設(shè)雙曲線(a>0,b>0)的右頂點為A,P為雙曲線上的一個動點(不是頂點),從點A引雙曲線的兩條漸近線的平行線,與直線OP分別交于Q,R兩點,其中O為坐標(biāo)原點,則|OP|2與|OQ|?|OR|的大小關(guān)系為()
A.|OP|2<|OQ|?|OR|
B.|OP|2>|OQ|?|OR|
C.|OP|2=|OQ|?|OR|
D.不確定答案:C48.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(
)
A.0
B.2
C.
D.3答案:B49.若函數(shù),則下列結(jié)論正確的是(
)A.,在上是增函數(shù)B.,在上是減函數(shù)C.,是偶函數(shù)D.,是奇函數(shù)答案:C解析:對于時有是一個偶函數(shù)50.利用計算機隨機模擬方法計算y=x2與y=4所圍成的區(qū)域Ω的面積時,可以先運行以下算法步驟:
第一步:利用計算機產(chǎn)生兩個在[0,1]區(qū)間內(nèi)的均勻隨機數(shù)a,b;
第二步:對隨機數(shù)a,b實施變換:答案:根據(jù)題意可得,點落在y=x2與y=4所圍成的區(qū)域Ω的點的概率是100-34100=66100,矩形的面積為4×4=16,陰影部分的面積為S,則有S16=66100,∴S=10.56.故為:10.56.第3卷一.綜合題(共50題)1.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|
=1故為:12.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>3.已知G是△ABC的重心,過G的一條直線交AB、AC兩點分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為34.已知函數(shù)f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.在函數(shù)①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數(shù)”.(填上正確的函數(shù)序號)答案:f1(x),f2(x)是“保三角形函數(shù)”,f3(x)不是“保三角形函數(shù)”.任給三角形,設(shè)它的三邊長分別為a,b,c,則a+b>c,不妨假設(shè)a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數(shù)”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數(shù)”.故為:①②.5.拋物線頂點在坐標(biāo)原點,以y軸為對稱軸,過焦點且與y軸垂直的弦長為16,則拋物線方程為______.答案:∵過焦點且與對稱軸y軸垂直的弦長等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.6.已知△ABC的頂點坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點為BC邊上的三等分點則D點分線段BC所成的比為12則易求出D點坐標(biāo)為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:327.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:
母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時,可以估計女兒的身高大致為______.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時,y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.8.以橢圓的焦點為頂點、頂點為焦點的雙曲線方程是()
A.
B.
C.
D.答案:C9.已知直線l1,l2的夾角平分線所在直線方程為y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()
A.bx+ay+c=0
B.a(chǎn)x-by+c=0
C.bx+ay-c=0
D.bx-ay+c=0答案:A10.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C11.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(
)
A.
B.
C.7
D.答案:D12.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a13.已知某幾何體的三視圖如圖,畫出它的直觀圖,求該幾何體的表面積和體積.答案:由三視圖可知:該幾何體是由下面長、寬、高分別為4、4、2的長方體,上面為高是2、底面是邊長分別為4、4的矩形的四棱錐,而組成的幾何體.它的直觀圖如圖.∴S表面積=4×2×4+4×4+4×12×4×22=48+162.V體積=4×4×2+13×4×4×2=1283.14.設(shè)F1,F(xiàn)2是雙曲線的兩個焦點,點P在雙曲線上,且·=0,則|PF1|·|PF2|值等于()
A.2
B.2
C.4
D.8答案:A15.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()
A.12種
B.48種
C.90種
D.96種答案:B16.如圖所示,圓的內(nèi)接三角形ABC的角平分線BD與AC交于點D,與圓交于點E,連接AE,已知ED=3,BD=6,則線段AE的長=______.答案:∵BD平分角∠CBA,∴∠CBE=∠EBA又∵∠CBE=∠EAD在△EDA和△EAB中,∠E=∠E,∠EAD=∠EBA∴△EDA∽△EAB∴AE:BE=ED:AE∴AE2=ED?BE又∵ED=3,BD=6,∴BE=9∴AE2=27∴AE=33故為:3317.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標(biāo)準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.18.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設(shè)c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.
①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.
②解①②得x=-79,y=-73.故應(yīng)填:(-79,-73).19.用數(shù)學(xué)歸納法證明:1n+1+1n+2+1n+3+…+1n+n>1124
(n∈N,n≥1)答案:證明:(1)當(dāng)n=1時,左邊=12>1124,∴n=1時成立(2分)(2)假設(shè)當(dāng)n=k(k≥1)時成立,即1k+1+1k+2+1k+3+…+1k+k>1124那么當(dāng)n=k+1時,左邊=1k+2+1k+3+…+1k+k
+1K+1+k+1k+1+k+1=1k+1+1k+2+1k+3+…+1k+k+1k+k+1
+1k+1+k+1-1k+1>1124+12k+1-12k+2>1124.∴n=k+1時也成立(7分)根據(jù)(1)(2)可得不等式對所有的n≥1都成立(8分)20.在殘差分析中,殘差圖的縱坐標(biāo)為______.答案:有殘差圖的定義知道,作圖時縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號,或身高數(shù)據(jù),或體重的估計值,這樣做出的圖形稱為殘差圖.故為:殘差.21.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.22.下列有關(guān)相關(guān)指數(shù)R2的說法正確的有()
A.R2的值越大,說明殘差平方和越小
B.R2越接近1,表示回歸效果越差
C.R2的值越小,說明殘差平方和越小
D.如果某數(shù)據(jù)可能采取幾種不同回歸方程進行回歸分析,一般選擇R2小的模型作為這組數(shù)據(jù)的模型答案:A23.設(shè)向量a,b,c滿足a+b+c=0,a⊥b,且a,b的模分別為s,t,其中s=a1=1,t=a3,an+1=nan,則c的模為______.答案:∵向量a,b,c滿足a+b+c=0,a⊥b,∴向量a,b,c構(gòu)成一個直角三角形,如圖∵s=a1=1,t=a3,an+1=nan,∴a21=1,即a2=1,∴a31=2,t=a3=2.∴|c|=1+4=5.故為:5.24.命題“若ab=0,則a、b中至少有一個為零”的逆否命題是
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:若a≠0,且b≠0,則ab≠0.25.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點,長軸在x軸上,離心率為32,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.26.在△ABC中,已知角A,B,C所對的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關(guān)系是______.答案:依題意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即兩直線方程中x的系數(shù)之比與y的系數(shù)之比相等,∴兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.故為:平行或重合.27.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.28.把矩陣變?yōu)楹?,與對應(yīng)的值是()
A.
B.
C.
D.答案:C29.給出的下列幾個命題:
①向量共面,則它們所在的直線共面;
②零向量的方向是任意的;
③若則存在唯一的實數(shù)λ,使
其中真命題的個數(shù)為()
A.0
B.1
C.2
D.3答案:B30.設(shè)△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:331.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.
(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;
(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當(dāng)0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).32.已知一次函數(shù)f(x)=4x+3,且f(ax+b)=8x+7,則a-b=______.答案:∵f(x)=4x+3,f(ax+b)=4(ax+b)+3=4ax+4b+3=8x+7,∴4a=84b+3=7,解得a=2,b=1,∴a-b=1.故為:1.33.某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫y與t之間關(guān)系的是()
A.y=2t
B.y=2t2
C.y=t3
D.y=log2t
答案:D34.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時,∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時,要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.35.定義在R上的二次函數(shù)y=f(x)在(0,2)上單調(diào)遞減,其圖象關(guān)于直線x=2對稱,則下列式子可以成立的是(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024中外合資企業(yè)教育培訓(xùn)與經(jīng)營合同書
- 2024廣州市房地產(chǎn)中介服務(wù)合同(賣方出租方使用)
- 2024個人民間借款合同范例
- 2024年信息安全保密協(xié)議
- 2024年合伙人分伙協(xié)議書
- 2024果樹苗木定購合同范本
- 跨境電商商品銷售合同
- 承包商土地使用權(quán)贈與合同模板
- 精裝修室內(nèi)工程合同
- 2024英文合同范本
- 2023年合肥高新建設(shè)投資集團公司招聘筆試題庫及答案解析
- 初中數(shù)學(xué)北師大七年級下冊第三章三角形北師大版-探索三角形全等的條件PPT
- 意大利的工業(yè)設(shè)計史課件
- 第四講大學(xué)生就業(yè)權(quán)益及其法律保障課件
- 污水處理站安全培訓(xùn)課件
- 公司工程碩士、博士聯(lián)合培養(yǎng)管理辦法
- 醫(yī)院優(yōu)質(zhì)服務(wù)考核表
- 東北大學(xué)考試《結(jié)構(gòu)力學(xué)ⅠX》考核作業(yè)參考324
- 《鄉(xiāng)土中國》之《名實的分離》-統(tǒng)編版高中語文必修上冊
- 戶外廣告牌施工方案53621
- 反假貨幣-外幣理論考試題庫(含答案)
評論
0/150
提交評論