版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇徐州市五縣一區(qū)2023~2023學(xué)年度第一學(xué)期期中考試高二數(shù)學(xué)試題(考試時間:120分鐘總分160分)注注意事項考生在答題前請認真閱讀本注意事項及各題答題要求1.本試卷共4頁包含填空題(第1題——第14題)、解答題(第15題——第20題).本卷滿分160分,考試時間為120分鐘.考試結(jié)束后請將答題卡交回.2.答題前請您務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請在答題卡上按照順序在對應(yīng)的答題區(qū)域內(nèi)作答在其他位置作答一律無效.作答必須用0.5毫米黑色墨水的簽字筆.請注意字體工整筆跡清楚.4.如需作圖須用2B鉛筆繪、寫清楚線條、符號等須加黑、加粗.5.請保持答題卡卡面清潔不要折疊、破損.一律不準(zhǔn)使用膠帶紙、修正液、可擦洗的圓珠筆.參考公式:錐體的體積公式:其中S是錐體的底面積,h是高.一、填空題:本大題共14小題,每小題5分,共計70分.請把答案填寫在答題卡相應(yīng)位置上.1.點直線的距離▲.2.點關(guān)于平面對稱點是▲.3.命題“有”的否定為▲.4.經(jīng)過點且與直線垂直的直線方程為▲.5.方程表示一個圓,則的取值范圍是▲.6.過三點和原點的圓的方程▲.7.已知兩條直線若直線與直線平行,則實數(shù)▲.8.已知是不同的平面,是不同的直線,給出下列4個命題:①若則②若則③若則;④若則則其中真命題為▲(寫出所有真命題的序號).9.若命題“”為假命題,則實數(shù)的取值范圍為▲.10.空間四個點在同一個球面上,、、兩兩垂直,且那么這個球的表面積是▲.11.直線被圓所截得的弦長為,則實數(shù)的值為▲.12.過點作圓的切線則切線的方程為▲.13.已知圓若以直線被圓所截得的弦為直徑的圓過原點,則實數(shù)▲.14.若方程有兩個不同的實數(shù)根,則實數(shù)的取值范圍為▲.二、解答題:本大題共6小題,共計90分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.15.(本小題滿分14分)已知直線和(1)求過直線和的交點且與直線平行的直線方程;(2)求直線和的交點到直線的距離. 16.(本小題滿分14分)如圖,在四棱錐中,平面平面平面PABCDPABCD(2)平面平面17.(本小題滿分14分)設(shè)實數(shù)滿足其中,命題實數(shù)滿足(1)若且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.18.(本小題滿分16分)如圖,在三棱柱中,側(cè)棱垂直于底面,,分別為、的中點.(1)求證:平面平面(2)求證:平面;(3)求三棱錐的體積.19.(本小題滿分16分)如圖:已知是圓與軸的交點,為直線上的動點,與圓的另一個交點分別為ANMPOB(1)若點坐標(biāo)為ANMPOB(2)求證:直線過定點.20.(本小題滿分16分)在平面直線角坐標(biāo)系中,已知直線,圓圓(1)當(dāng)時,試判斷圓和圓的位置關(guān)系,并說明理由;(2)若圓和圓關(guān)于直線對稱,求的值;(3)在(2)的條件下,若為平面上的點,是否存在過點的無窮多對互相垂直的直線和,它們分別與圓和相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,若存在,求點的坐標(biāo),若不存在,請說明理由.2023~2023學(xué)年度第一學(xué)期期中考試高二數(shù)學(xué)參考答案一、填空題:1.2.3.存在x0∈R,xeq\o\al(2,0)<04.5.6.(+2)2+(y-1)2=57.8.②④9.10.11.或12.或13.或--414.二、解答題15.解:(Ⅰ)由,解得交點坐標(biāo)為----------------3分因為所求直線與直線平行,則所求直線方程的斜率為,所求直線方程為----------------------------------7分(Ⅱ)由(1)知兩直線的交點坐標(biāo)為所以點到直線的坐標(biāo)為---------------14分16.【證】(1)因為BCABCPDH為,所以BCPB,ABCPDH而,于是點H與B不重合,即PBPH=H.----------------12分因為PB,PH平面PAB,所以BC平面PAB因為BC平面PBC,故平面PBC平面AB-----------------------------14分17解:由得,又,所以,當(dāng)時,2﹤a﹤6,即為真時實數(shù)的取值范圍是2﹤a﹤6.---------2分由,得,即為真時實數(shù)的取值范圍是.----4分若為真,則真且真,所以實數(shù)的取值范圍是------------7分(Ⅱ)是的充分不必要條件,即,且,設(shè)A=,B=,則,-----------------------------------10分又A==,B==},---------12分則0<,且所以實數(shù)的取值范圍是----------------14分18.解:(I)在三棱柱中,底面ABC,所以AB,----------3分又因為AB⊥BC,所以AB⊥平面,所以平面平面.-----------6分(II)取AB中點G,連結(jié)EG,F(xiàn)G,因為E,F(xiàn)分別是、的中點,所以FG∥AC,且FG=AC,因為AC∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,-----------------------------8分又因為EG平面ABE,平面ABE,所以平面.---------------10分(III)因為=AC=2,BC=1,AB⊥BC,所以AB=,------------14分所以三棱錐的體積為:==.--------16分19.解(1)直線PA方程為,由解得,直線PB的方程,由解得,----------4分所以的方程----------------------------------------6分(2)設(shè),則直線PA的方程為,直線PB的方程為得,同理---------10分直線MN的斜率-------------------------12分直線MN的方程為,-------------------------14分化簡得:所以直線過定點----------------------------------------16分20.解:(1)時圓的圓心半徑圓的圓心半徑圓心距----------------2分兩圓相離----------------------------------------------------4分(2)圓圓心半徑與關(guān)于直線對稱,又直線的斜率由-----------------------------------6分得,即的值為0-----------------------------------------------8分(3)假設(shè)存在滿足條件:不妨設(shè)的方程為則的方程為---------------------------------------10分因為圓和圓的半徑相等,又直線被圓截得的弦長與直線被圓截得的弦長相等,所以圓的圓心到直線距離,和圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙糾紛訴狀范文
- 北師大版一年級下冊語文教案
- 河道清潔維護工程合同
- 屋面綠化施工共享合同
- 六年級信息技術(shù)上冊教案
- 餐飲業(yè)食品安全操作指引
- 企業(yè)文化建設(shè)行政人事部行動
- 建筑工程招投標(biāo)流程選擇題
- 汽車維修用章質(zhì)量保證
- 2023-2024學(xué)年北京市清華附中朝陽學(xué)校七年級(上)期中數(shù)學(xué)試卷【含解析】
- 2024年全國高考Ⅰ卷英語試題及答案
- 北京三甲中醫(yī)疼痛科合作方案
- 《夏天里的成長》語文教學(xué)PPT課件(6篇)
- 《駝鹿消防員的一天》課件
- 小學(xué)思政課《愛國主義教育》
- (完整版)能源審計合同樣本
- 火鍋連鎖餐飲連鎖餐廳運營資料 海底撈 杯具清洗消毒流程P1
- 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)創(chuàng)投基金組建方案
- 《中國神話故事》名著導(dǎo)讀讀后感PPT模板下載
- 淺議森林防火隔離帶的實施方法
評論
0/150
提交評論