安徽省銅陵市2023屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁(yè)
安徽省銅陵市2023屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁(yè)
安徽省銅陵市2023屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁(yè)
安徽省銅陵市2023屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁(yè)
安徽省銅陵市2023屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.42.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.73.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知向量,則向量在向量方向上的投影為()A. B. C. D.5.設(shè)集合、是全集的兩個(gè)子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖,中,點(diǎn)D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得7.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.28.已知是虛數(shù)單位,則()A. B. C. D.9.直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.710.的展開式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.4011.已知,,,則,,的大小關(guān)系為()A. B. C. D.12.給出以下四個(gè)命題:①依次首尾相接的四條線段必共面;②過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面;③空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,則焦點(diǎn)到這條漸近線的距離為_____.14.已知復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)是_____,_____.15.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.16.某種圓柱形的如罐的容積為個(gè)立方單位,當(dāng)它的底面半徑和高的比值為______.時(shí),可使得所用材料最省.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.18.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.19.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對(duì)任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對(duì)一切,都有成立.20.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對(duì)邊分別為,且,求的面積.21.(12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.22.(10分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過(guò)的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)對(duì)稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對(duì)稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.2、D【解析】

利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.3、C【解析】

由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【詳解】解析:,,對(duì)應(yīng)點(diǎn)為,在第三象限.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.4、A【解析】

投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.5、C【解析】

作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所示,,同時(shí).故選:C.【點(diǎn)睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】

根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進(jìn)行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過(guò)點(diǎn)作交于點(diǎn),過(guò)作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點(diǎn)睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.7、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.9、B【解析】

根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.10、A【解析】

化簡(jiǎn)得到,再利用二項(xiàng)式定理展開得到答案.【詳解】展開式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.11、D【解析】

構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對(duì)數(shù)式比較大小,屬于中檔題.12、B【解析】

用空間四邊形對(duì)①進(jìn)行判斷;根據(jù)公理2對(duì)②進(jìn)行判斷;根據(jù)空間角的定義對(duì)③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對(duì)④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯(cuò)誤.②中,由公理2知道,過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面,故②正確.③中,由空間角的定義知道,空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ),故③錯(cuò)誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯(cuò)誤.故選:B【點(diǎn)睛】本小題考查空間點(diǎn),線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識(shí);考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點(diǎn),利用點(diǎn)到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點(diǎn)為焦點(diǎn)到這條漸近線的距離為:本題正確結(jié)果:【點(diǎn)睛】本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點(diǎn)到直線距離公式的考查,屬于基礎(chǔ)題.14、【解析】

直接利用復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),從而得到復(fù)數(shù)的共軛復(fù)數(shù)和的模.【詳解】,則復(fù)數(shù)的共軛復(fù)數(shù)為,且.故答案為:;.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.15、【解析】

求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點(diǎn)睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.16、【解析】

設(shè)圓柱的高為,底面半徑為,根據(jù)容積為個(gè)立方單位可得,再列出該圓柱的表面積,利用導(dǎo)數(shù)求出最值,從而進(jìn)一步得到圓柱的底面半徑和高的比值.【詳解】設(shè)圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個(gè)立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調(diào)遞減,在上單調(diào)遞增.∴當(dāng)時(shí),取得最小值,即材料最省,此時(shí).故答案為:.【點(diǎn)睛】本題考查函數(shù)的應(yīng)用,解答本題的關(guān)鍵是寫出表面積的表示式,再利用導(dǎo)數(shù)求函數(shù)的最值,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】

(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對(duì)值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時(shí),,當(dāng),,當(dāng)時(shí),,所以解法二:(1)如圖當(dāng)時(shí),解法三:(1)當(dāng)且僅當(dāng)即時(shí),等號(hào)成立.當(dāng)時(shí)解法一:(2)由題意可知,,因?yàn)?,,,所以要證明不等式,只需證明,因?yàn)槌闪?,所以原不等式成?解法二:(2)因?yàn)椋?,,所以,,又因?yàn)?,所以,所以,原不等式得證.補(bǔ)充:解法三:(2)由題意可知,,因?yàn)?,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點(diǎn)睛】本題主要考查了絕對(duì)值函數(shù)的最值求解,不等式的證明,絕對(duì)值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運(yùn)算求解能力.18、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】

(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過(guò)圓的圓心,可得出為圓的一條直徑,進(jìn)而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點(diǎn)在直線上,直線過(guò)圓的圓心.因此,是圓的直徑,.【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時(shí)也考查了直線截圓所得弦長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.19、(1)(2)((3)見(jiàn)證明【解析】

(1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律確定函數(shù)單調(diào)性,最后根據(jù)函數(shù)單調(diào)性確定最小值取法;(2)先分離不等式,轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題,利用導(dǎo)數(shù)求對(duì)應(yīng)函數(shù)最值即得結(jié)果;(3)構(gòu)造兩個(gè)函數(shù),再利用兩函數(shù)最值關(guān)系進(jìn)行證明.【詳解】(1)當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以函數(shù)f(x)的最小值為f()=;(2)因?yàn)樗詥?wèn)題等價(jià)于在上恒成立,記則,因?yàn)?,令函?shù)f(x)在(0,1)上單調(diào)遞減;函數(shù)f(x)在(1,+)上單調(diào)遞增;即,即實(shí)數(shù)a的取值范圍為(.(3)問(wèn)題等價(jià)于證明由(1)知道,令函數(shù)在(0,1)上單調(diào)遞增;函數(shù)在(1,+)上單調(diào)遞減;所以{,因此,因?yàn)閮蓚€(gè)等號(hào)不能同時(shí)取得,所以即對(duì)一切,都有成立.【點(diǎn)睛】對(duì)于求不等式成立時(shí)的參數(shù)范圍問(wèn)題,在可能的情況下把參數(shù)分離出來(lái),使不等式一端是含有參數(shù)的不等式,另一端是一個(gè)區(qū)間上具體的函數(shù),這樣就把問(wèn)題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問(wèn)題的解決.但要注意分離參數(shù)法不是萬(wàn)能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.20、(1);(2)或【解析】

(1)利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當(dāng)時(shí),由余弦定理得即,解得.此時(shí).當(dāng)時(shí),由余弦定理得.即,解得.此時(shí).【點(diǎn)睛】本題主要考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎(chǔ)題.21、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過(guò)300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論