2022-2023學(xué)年廣東省肇慶市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省肇慶市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省肇慶市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省肇慶市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省肇慶市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省肇慶市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.二次積分等于()A.A.

B.

C.

D.

2.

3.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。

A.eB.1C.1+e2

D.ln2

4.

5.

A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散

6.A.A.較高階的無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階但不等價(jià)無(wú)窮小量D.較低階的無(wú)窮小量

7.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

8.A.0B.2C.2f(-1)D.2f(1)

9.A.A.yxy-1

B.yxy

C.xylnx

D.xylny

10.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上

A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值

11.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()

A.

B.ln(1+x)

C.

D.x2(x+1)

12.

13.

A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

14.

15.

16.()。A.e-2

B.e-2/3

C.e2/3

D.e2

17.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無(wú)關(guān)()。

A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)

18.

19.A.0B.1C.∞D(zhuǎn).不存在但不是∞

20.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。

A.0≤α≤φ

B.0≤φ≤α

C.0<α<90。

D.0<φ<90。

二、填空題(20題)21.

22.

23.24.

25.

26.

27.

28.直線的方向向量為_(kāi)_______。29.設(shè)y=ex/x,則dy=________。30.

31.

32.設(shè)z=sin(x2y),則=________。

33.ylnxdx+xlnydy=0的通解是______.

34.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.43.

44.證明:45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

47.求微分方程y"-4y'+4y=e-2x的通解.

48.

49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

50.

51.52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

53.54.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).55.求曲線在點(diǎn)(1,3)處的切線方程.

56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

57.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則58.

59.

60.求微分方程的通解.四、解答題(10題)61.

62.

63.

64.

65.

66.

67.

68.

69.

70.設(shè)f(x)為連續(xù)函數(shù),且五、高等數(shù)學(xué)(0題)71.∫f(x)dx=F(x)+則∫c-xf(e-x)dx=__________。

六、解答題(0題)72.求fe-2xdx。

參考答案

1.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

2.D

3.C

4.D

5.C解析:

6.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.

7.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域?yàn)?-∞,+∞)。

當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),

當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。

8.C本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。

9.A

10.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),

因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。

11.B?

12.D

13.A

本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

14.B

15.B解析:

16.B

17.A

18.B

19.D

20.A

21.

22.(sinx+cosx)exdx(sinx+cosx)exdx解析:

23.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

24.

25.

26.極大值為8極大值為8

27.28.直線l的方向向量為

29.30.2.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

能利用洛必達(dá)法則求解.

如果計(jì)算極限,應(yīng)該先判定其類型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.

檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.

31.e32.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。

33.(lnx)2+(lny)2=C

34.e2

35.

解析:

36.(-33)(-3,3)解析:

37.3x2+4y

38.

39.

40.

解析:41.由二重積分物理意義知

42.

43.

44.

45.

46.函數(shù)的定義域?yàn)?/p>

注意

47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

48.由一階線性微分方程通解公式有

49.

列表:

說(shuō)明

50.

51.

52.

53.

54.55.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

56.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%57.由等價(jià)無(wú)窮小量的定義可知

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.解如圖所示,把積分區(qū)域D作為y一型區(qū)域,即

69.70.設(shè),則f(x)=x3+3Ax.將上式兩端在[0,1]上積分,得

因此

本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示一個(gè)確定的數(shù)值;計(jì)算定積分.

由于定積分存在,因此它表示一個(gè)確定的數(shù)值,設(shè),則

f(x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論