云南省峨山縣大龍?zhí)吨袑W(xué)2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
云南省峨山縣大龍?zhí)吨袑W(xué)2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
云南省峨山縣大龍?zhí)吨袑W(xué)2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
云南省峨山縣大龍?zhí)吨袑W(xué)2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
云南省峨山縣大龍?zhí)吨袑W(xué)2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列事件的概率,與“任意選個人,恰好同月過生日”這一事件的概率相等的是()A.任意選個人,恰好生肖相同 B.任意選個人,恰好同一天過生日C.任意擲枚骰子,恰好朝上的點數(shù)相同 D.任意擲枚硬幣,恰好朝上的一面相同2.如圖,AD是的高,AE是外接圓的直徑,圓心為點O,且AC=5,DC=3,,則AE等于()A. B. C. D.53.如圖,是圓的直徑,直線與圓相切于點,交圓于點,連接.若,則的度數(shù)是()A. B. C. D.4.如圖,把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個正方形,如果所剪得的兩個正方形邊長都是1,那么圓形紙片和扇形紙片的面積比是()A.4:5 B.2:5 C.:2 D.:5.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.6.如圖,將矩形紙片ABCD折疊,使點A落在BC上的點F處,折痕為BE,若沿EF剪下,則折疊部分是一個正方形,其數(shù)學(xué)原理是()A.鄰邊相等的矩形是正方形B.對角線相等的菱形是正方形C.兩個全等的直角三角形構(gòu)成正方形D.軸對稱圖形是正方形7.已知二次函數(shù)y=x2﹣2x+m(m為常數(shù))的圖象與x軸的一個點為(3,0),則關(guān)于x的一元二次方程x2﹣2x+m=0的兩個實數(shù)根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣58.sin30°等于()A. B. C. D.9.去年某果園隨機從甲、乙、丙、丁四個品種的葡萄樹中各采摘了10棵,每棵產(chǎn)量的平均數(shù)(單位:千克)及方差(單位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年準備從四個品種中選出一種產(chǎn)量既高又穩(wěn)定的葡萄樹進行種植,應(yīng)選的品種是(

)A.甲 B.乙 C.丙 D.丁10.有一個矩形苗圃園,其中一邊靠墻,另外三邊用長為的籬笆圍成.已知墻長為若平行于墻的一邊長不小于則這個苗圃園面積的最大值和最小值分別為()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,拋物線與軸交于、兩點,與軸交于點,點是對稱軸右側(cè)拋物線上一點,且,則點的坐標為___________.12.在中,若、滿足,則為________三角形.13.如圖,點A,B,C在⊙O上,∠A=40度,∠C=20度,則∠B=_____度.14.小明家的客廳有一張直徑為1.2米,高0.8米的圓桌BC,在距地面2米的A處有一盞燈,圓桌的影子為DE,依據(jù)題意建立平面直角坐標系,其中D點坐標為(2,0),則點E的坐標是_____.15.如圖,在△ABC中,∠ABC=90°,AB=6,BC=4,P是△ABC的重心,連結(jié)BP,CP,則△BPC的面積為_____.16.拋物線在對稱軸_____(填“左側(cè)”或“右側(cè)”)的部分是下降的.17.如圖,點在直線上,點的橫坐標為,過作,交軸于點,以為邊,向右作正方形,延長交軸于點;以為邊,向右作正方形,延長交軸于點;以為邊,向右作正方形延長交軸于點;按照這個規(guī)律進行下去,點的橫坐標為_____(結(jié)果用含正整數(shù)的代數(shù)式表示)18.一天,小青想利用影子測量校園內(nèi)一根旗桿的高度,在同一時刻內(nèi),小青的影長為米,旗桿的影長為米,若小青的身高為米,則旗桿的高度為__________米.三、解答題(共66分)19.(10分)為測量某特種車輛的性能,研究制定了行駛指數(shù),而的大小與平均速度和行駛路程有關(guān)(不考慮其他因素),由兩部分的和組成,一部分與成正比,另一部分與成正比.在實驗中得到了表格中的數(shù)據(jù):速度路程指數(shù)(1)用含和的式子表示;(2)當行駛指數(shù)為,而行駛路程為時,求平均速度的值;(3)當行駛路程為時,若行駛指數(shù)值最大,求平均速度的值.20.(6分)如圖,在四邊形ABCD中,AB⊥AD,=,對角線AC與BD交于點O,AC=10,∠ABD=∠ACB,點E在CB延長線上,且AE=AC.(1)求證:△AEB∽△BCO;(2)當AE∥BD時,求AO的長.21.(6分)我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.22.(8分)如圖,為測量小島A到公路BD的距離,先在點B處測得∠ABD=37°,再沿BD方向前進150m到達點C,測得∠ACD=45°,求小島A到公路BD的距離.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(8分)請畫出下面幾何體的三視圖24.(8分)如圖,在中,,是邊上的中線,過點作,垂足為,交于點,.(1)求的值:(2)若,求的長.25.(10分)如圖,頂點為M的拋物線y=a(x+1)2-4分別與x軸相交于點A,B(點A在點B的)右側(cè)),與y軸相交于點C(0,﹣3).(1)求拋物線的函數(shù)表達式;(2)判斷△BCM是否為直角三角形,并說明理由.(3)拋物線上是否存在點N(不與點C重合),使得以點A,B,N為頂點的三角形的面積與S△ABC的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.26.(10分)如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD延長線交于點F,且∠AFB=∠ABC.(1)求證:直線BF是⊙O的切線;(2)若CD=2,BP=1,求⊙O的半徑.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)概率的意義對各選項分析判斷即可得解.【詳解】任選人,恰好同月過生日的概率為,A任選人,恰好生肖相同的概率為,B任選人,恰好同一天過生日的概率為,C任意擲枚骰子,恰好朝上的點數(shù)相同的概率為,D任意擲枚硬幣,恰好朝上的一面相同的概率為.故選:A.【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.2、C【分析】由AD是的高可得和為直角三角形,由勾股定理求得AD的長,解三角形得AB的長,連接BE.由同弧所對的圓周角相等可知∠BEA=∠ACB,解直角三角形ABE即可求出AE.【詳解】解:如圖,連接BE,∵AD是的高,∴和為直角三角形,∵AC=5,DC=3,,∴AD=4,,∵,∴∠BEA=∠ACB,∵AE是的直徑,∴,即是直角三角形,sin∠BEA=sin∠ACB=,∴,故選:C.【點睛】本題考查了直徑所對的圓周角是直角、同弧所對的圓周角相等、解直角三角形和勾股定理,熟練掌握定理是解題的關(guān)鍵.3、B【分析】根據(jù)切線的性質(zhì)可得:∠BAP=90°,然后根據(jù)三角形的內(nèi)角和定理即可求出∠AOC,最后根據(jù)圓周角定理即可求出.【詳解】解:∵直線與圓相切∴∠BAP=90°∵∴∠AOC=180°-∠BAP-∠P=48°∴故選B.【點睛】此題考查的是切線的性質(zhì)和圓周角定理,掌握切線的性質(zhì)和同弧所對的圓周角是圓心角的一半是解決此題的關(guān)鍵.4、A【分析】首先分別求出扇形和圓的半徑,再根據(jù)面積公式求出面積,最后求出比值即可.【詳解】如圖1,連接OD,∵四邊形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=41°,∴OB=AB=1,由勾股定理得:,∴扇形的面積是;如圖2,連接MB、MC,∵四邊形ABCD是⊙M的內(nèi)接四邊形,四邊形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=41°,∵BC=1,∴MC=MB=,∴⊙M的面積是,∴扇形和圓形紙板的面積比是,即圓形紙片和扇形紙片的面積比是4:1.故選:A.【點睛】本題考查了正方形性質(zhì),圓內(nèi)接四邊形性質(zhì),扇形的面積公式的應(yīng)用,解此題的關(guān)鍵是求出扇形和圓的面積,題目比較好,難度適中.5、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合求解.【詳解】B既是軸對稱圖形,又是中心對稱圖形;C只是軸對稱圖形;D既不是軸對稱圖形也不是中心對稱圖形,只有A符合.故選A.6、A【解析】∵將長方形紙片折疊,A落在BC上的F處,∴BA=BF,∵折痕為BE,沿EF剪下,∴四邊形ABFE為矩形,∴四邊形ABEF為正方形.故用的判定定理是;鄰邊相等的矩形是正方形.故選A.7、A【分析】利用拋物線的對稱性確定拋物線與x軸的另一個點為(﹣1,0),然后利用拋物線與x軸的交點問題求解.【詳解】解:∵拋物線的對稱軸為直線x=﹣=1,而拋物線與x軸的一個點為(1,0),∴拋物線與x軸的另一個點為(﹣1,0),∴關(guān)于x的一元二次方程x2﹣2x+m=0的兩個實數(shù)根是x1=﹣1,x2=1.故選:A.【點睛】本題考查了拋物線與軸的交點:把求二次函數(shù),,是常數(shù),與軸的交點坐標問題轉(zhuǎn)化為解關(guān)于的一元二次方程.也考查了二次函數(shù)的性質(zhì).8、B【解析】分析:根據(jù)特殊角的三角函數(shù)值來解答本題.詳解:sin30°=.故選B.點睛:本題考查了特殊角的三角函數(shù)值,特殊角三角函數(shù)值的計算在中考中經(jīng)常出現(xiàn),題型以選擇題、填空題為主.9、B【分析】先比較平均數(shù)得到甲組和乙組產(chǎn)量較好,然后比較方差得到乙組的狀態(tài)穩(wěn)定.【詳解】因為甲組、乙組的平均數(shù)丙組比丁組大,而乙組的方差比甲組的小,所以乙組的產(chǎn)量比較穩(wěn)定,所以乙組的產(chǎn)量既高又穩(wěn)定,故選B.【點睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.10、C【分析】設(shè)垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2,根據(jù)二次函數(shù)的圖象及性質(zhì)求最值即可.【詳解】解:設(shè)垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2由題意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函數(shù)圖象的對稱軸為直線x=5∴當x=5時,y取最大值,最大值為50;當x=2.5時,y取最小值,最小值為37.5;故選C.【點睛】此題考查的是二次函數(shù)的應(yīng)用,掌握二次函數(shù)的圖象及性質(zhì)是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)已知條件,需要構(gòu)造直角三角形,過D做DH⊥CR于點H,用含字母的代數(shù)式表示出PH、RH,即可求解.【詳解】解:過點D作DQ⊥x軸于Q,交CB延長線于R,作DH⊥CR于H,過R做RF⊥y軸于F,∵拋物線與軸交于、兩點,與軸交于點,∴A(1,0),B(2,0)C(0,2)∴直線BC的解析式為y=-x+2設(shè)點D坐標為(m,m2-3m+2),R(m,-m+2),∴DR=m2-3m+2-(-m+2)=m2-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴CR=,∵經(jīng)檢驗是方程的解.故答案為:【點睛】本題考查了函數(shù)性質(zhì)和勾股定理逆定理的應(yīng)用還有銳角三角函數(shù)值的應(yīng)用,本題比較復(fù)雜,先根據(jù)題意構(gòu)造直角三角形.12、直角【分析】先根據(jù)非負數(shù)的性質(zhì)及特殊角的三角函數(shù)值求得∠A和∠B,即可作出判斷.【詳解】∵,∴,,∴,,∵,,∴∠A=30°,∠B=60°,

∴,

∴△ABC是直角三角形.

故答案為:直角.【點睛】本題考查了特殊角的三角函數(shù)值,非負數(shù)的性質(zhì)及三角形的內(nèi)角和定理,根據(jù)非負數(shù)的性質(zhì)及特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),是解題的關(guān)鍵.13、1【分析】如圖,連接OA,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠C=20°,根據(jù)等腰三角形的性質(zhì)解答即可.【詳解】如圖,連接OA,∵OA=OC,∴∠OAC=∠C=20°,∴∠OAB=∠OAC+∠BAC=20°+40°=1°,∵OA=OB,∴∠B=∠OAB=1°,故答案為1.【點睛】本題考查了圓的性質(zhì)的應(yīng)用,熟練掌握圓的半徑相等、等腰三角形的性質(zhì)是解題的關(guān)鍵.14、(4,0)【解析】根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點睛】本題考查了中心投影,相似三角形的判定和性質(zhì),正確的識別圖形是解題的關(guān)鍵.15、1【分析】△ABC的面積S=AB×BC==12,延長BP交AC于點E,則E是AC的中點,且BP=BE,即可求解.【詳解】解:△ABC的面積S=AB×BC==12,延長BP交AC于點E,則E是AC的中點,且BP=BE,(證明見備注)△BEC的面積=S=6,BP=BE,則△BPC的面積=△BEC的面積=1,故答案為:1.備注:重心到頂點的距離與重心到對邊中點的距離之比為2:1,例:已知:△ABC,E、F是AB,AC的中點.EC、FB交于G.求證:EG=CG證明:過E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=AF,又∵AF=CF,∴HF=CF,∴HF:CF=,∵EH∥BF,∴EG:CG=HF:CF=,∴EG=CG.【點睛】此題考查了重心的概念和性質(zhì):三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.16、右側(cè)【解析】根據(jù)二次函數(shù)的性質(zhì)解題.【詳解】解:∵a=-1<0,

∴拋物線開口向下,頂點是拋物線的最高點,拋物線在對稱軸右側(cè)的部分是下降的,

故答案為:右側(cè).點睛:本題考查了二次函數(shù)的性質(zhì),熟練掌握性質(zhì)上解題的關(guān)鍵.17、【解析】過點分別作軸,軸,軸,軸,軸,……垂足分別為,根據(jù)題意求出,得到圖中所有的直角三角形都相似,兩條直角邊的比都是可以求出點的橫坐標為:,再依次求出……即可求解.【詳解】解:過點分別作軸,軸,軸,軸,軸,……垂足分別為點在直線上,點的橫坐標為,點的縱坐標為,即:圖中所有的直角三角形都相似,兩條直角邊的比都是點的橫坐標為:,點的橫坐標為:點C3的橫坐標為:點的橫坐標為:點的橫坐標為:故答案為:【點睛】本題考查的是規(guī)律,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.18、1【分析】易得△AOB∽△ECD,利用相似三角形對應(yīng)邊的比相等可得旗桿OA的長度.【詳解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴,解得OA=1.故答案為1.三、解答題(共66分)19、(1);(2)50km/h;(3)90km/h.【分析】(1)設(shè)K=mv2+nsv,則P=mv2+nsv+1000,利用待定系數(shù)法求解可得;

(2)將P=500代入(1)中解析式,解方程可得;

(3)將s=180代入解析式后,配方成頂點式可得最值情況.【詳解】解:(1)設(shè)K=mv2+nsv,則P=mv2+nsv+1000,由題意得:,整理得:,解得:,則P=﹣v2+sv+1000;(2)根據(jù)題意得﹣v2+40v+1000=500,整理得:v2﹣40v﹣500=0,解得:v=﹣10(舍)或v=50,答:平均速度為50km/h;(3)當s=180時,P=﹣v2+180v+1000=﹣(v﹣90)2+9100,∴當v=90時,P最大=9100,答:若行駛指數(shù)值最大,平均速度的值為90km/h.【點睛】本題主要考查待定系數(shù)法求函數(shù)解析式、解二元一次方程組、解一元二次方程的能力及二次函數(shù)的性質(zhì),熟練掌握待定系數(shù)法求得函數(shù)解析式是解題的關(guān)鍵.20、(1)見解析;(2)【分析】(1)根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)三角形的內(nèi)角和和平角的性質(zhì)得到,于是得到結(jié)論;(2)過作與,過作與,根據(jù)平行線的性質(zhì)得到,,推出,求得,,得到,根據(jù)相似三角形的性質(zhì)得到,于是得到,根據(jù)平行線分線段成比例定理即可得到結(jié)論.【詳解】解:(1),,,,,,,在△AEB和△BCO中,,;(2)過作于,過作于,,,,,,,,,,,,,,,,,,,,,,,,,,,,.【點睛】本題考查了相似三角形的判定和性質(zhì),平行線分線段成比例定理,等腰三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.21、存在等對邊四邊形,是四邊形DBCE,見解析【分析】作CG⊥BE于G點,作BF⊥CD交CD延長線于F點,證明△BCF≌△CBG,得到BF=CG,再證∠BDF=∠BEC,得到△BDF≌△CEG,故而BD=CE,即四邊形DBCE是等對邊四邊形.【詳解】解:此時存在等對邊四邊形,是四邊形DBCE.如圖,作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.∵∠DCB=∠EBC=∠A,BC為公共邊,∴△BCF≌△CBG,∴BF=CG,∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,∴∠BDF=∠BEC,∴△BDF≌△CEG,∴BD=CE∴四邊形DBCE是等對邊四邊形.【點睛】此題考查新定義形式下三角形全等的判定,由題意及圖形分析得到等對邊四邊形是四邊形DBCE,應(yīng)證明線段BD=CE,只能作輔助線通過證明三角形全等得到結(jié)論,繼而得解此題.22、1米.【分析】過A作AE⊥CD垂足為E,設(shè)AE=x米,再利用銳角三角函數(shù)關(guān)系得出BE=x,CE=x,根據(jù)BC=BE﹣CE,得到關(guān)于x的方程,即可得出答案.【詳解】解:過A作AE⊥CD垂足為E,設(shè)AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小島A到公路BD的距離為1米.【點睛】本題考查了三角函數(shù)和一元一次方程的問題,掌握特殊三角函數(shù)值和解一元一次方程的方法是解題的關(guān)鍵.23、詳見解析.【分析】根據(jù)幾何體分別畫出從正面,上面和左面看到的圖形即可.【詳解】如圖所示:主視圖左視圖俯視圖【點睛】本題主要考查幾何體的三視圖,掌握三視圖的畫法是解題的關(guān)鍵.24、(1);(2)4【分析】(1)根據(jù)∠ACB=90°,CD是斜邊AB上的中線,可得出CD=BD,則∠B=∠BCD,再由AE⊥CD,可證明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根據(jù)sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根據(jù)勾股定理即可得出結(jié)論.【詳解】(1)∵,是斜邊的中線,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【點睛】本題主要考查了勾股定理和銳角三角比,熟練掌握根據(jù)銳角三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論