上海市奉賢區(qū)曙光中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第1頁
上海市奉賢區(qū)曙光中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第2頁
上海市奉賢區(qū)曙光中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第3頁
上海市奉賢區(qū)曙光中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第4頁
上海市奉賢區(qū)曙光中學(xué)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個問題:“三百七十里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行數(shù)里,請公仔細(xì)算相還”.其意思為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,請問從第幾天開始,走的路程少于30里()A.3 B.4 C.5 D.62.甲、乙、丙三人隨機(jī)排成一排,乙站在中間的概率是()A. B. C. D.3.若,且,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.如圖,,是半徑為2的圓周上的定點(diǎn),為圓周上的動點(diǎn)且,,則圖中陰影區(qū)域面積的最大值為()A. B. C. D.5.已知關(guān)于的不等式對任意恒成立,則的取值范圍是()A. B.C. D.6.若向量=,||=2,若·(-)=2,則向量與的夾角()A. B. C. D.7.已知為第二象限角,則所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限8.已知函數(shù),此函數(shù)的圖象如圖所示,則點(diǎn)的坐標(biāo)是()A. B. C. D.9.已知,,則()A. B. C. D.10.如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某多面體的三視圖,則此幾何體的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列,,,,則______.12.函數(shù)的最小正周期是______.13.若是等比數(shù)列,,,則________14.已知,則___________.15.如圖是一個三角形數(shù)表,記,,…,分別表示第行從左向右數(shù)的第1個數(shù),第2個數(shù),…,第個數(shù),則當(dāng),時,______.16.等差數(shù)列,,存在正整數(shù),使得,,若集合有4個不同元素,則的可能取值有______個.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為.若.(1)求;(2)求的面積的最大值.18.某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表

高三

高二

高一

女生

133

153

z

男生

333

453

633

按年級分層抽樣的方法評選優(yōu)秀學(xué)生53人,其中高三有13人.(1)求z的值;(2)用分層抽樣的方法在高一中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機(jī)抽樣的方法從高二女生中抽取2人,經(jīng)檢測她們的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把這2人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過3.5的概率.19.已知函數(shù),(,,)的部分圖象如圖所示,其中點(diǎn)是圖象的一個最高點(diǎn).(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.20.已知函數(shù).(1)求的值及f(x)的對稱軸;(2)將的圖象向左平移個單位得到函數(shù)的圖象,求的單調(diào)遞增區(qū)間.21.已知數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)當(dāng)時,證明不等式:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由題意知,本題考查等比數(shù)列問題,此人每天的步數(shù)構(gòu)成公比為的等比數(shù)列,由求和公式可得首項(xiàng),進(jìn)而求得答案.【詳解】設(shè)第一天的步數(shù)為,依題意知此人每天的步數(shù)構(gòu)成公比為的等比數(shù)列,所以,解得,由,,解得,故選B.【點(diǎn)睛】本題主要考查學(xué)生的數(shù)學(xué)抽象和數(shù)學(xué)建模能力.2、B【解析】

先求出甲、乙、丙三人隨機(jī)排成一排的基本事件的個數(shù),再求出乙站在中間的基本事件的個數(shù),再求概率即可.【詳解】解:三個人排成一排的所有情況有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6種,乙在中間有2種,所以乙在中間的概率為,故選B.【點(diǎn)睛】本題考查了古典概型,屬基礎(chǔ)題.3、A【解析】

將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,所以,的最小值為.由題意可得,即,解得.因此,實(shí)數(shù)的取值范圍是,故選A.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問題以及一元二次不等式的解法,對于不等式恒成立問題,常轉(zhuǎn)化為最值來處理,考查計(jì)算能力,屬于中等題.4、D【解析】

由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,運(yùn)用扇形面積公式和三角形的面積公式,計(jì)算可得所求最大值.【詳解】由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,即有,到線段的距離為,,扇形的面積為,的面積為,,即有陰影區(qū)域的面積的最大值為.故選.【點(diǎn)睛】本題考查扇形面積公式和三角函數(shù)的恒等變換,考查化簡運(yùn)算能力,屬于中檔題.5、A【解析】

分別討論和兩種情況下,恒成立的條件,即可求得的取值范圍.【詳解】當(dāng)時,不等式可化為,其恒成立當(dāng)時,要滿足關(guān)于的不等式任意恒成立,只需解得:.綜上所述,的取值范圍是.故選:A.【點(diǎn)睛】本題考查了含參數(shù)一元二次不等式恒成立問題,解題關(guān)鍵是掌握含有參數(shù)的不等式的求解,首先需要對二次項(xiàng)系數(shù)討論,注意分類討論思想的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】

根據(jù)向量的數(shù)量積運(yùn)算,向量的夾角公式可以求得.【詳解】由已知可得:,得,設(shè)向量與的夾角為,則所以向量與的夾角為故選A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和夾角公式,屬于基礎(chǔ)題.7、A【解析】

用不等式表示第二象限角,再利用不等式的性質(zhì)求出滿足的不等式,從而確定角的終邊在的象限.【詳解】由已知為第二象限角,則則當(dāng)時,此時在第一象限.當(dāng)時,,此時在第三象限.故選:A【點(diǎn)睛】本題考查象限角的表示方法,不等式性質(zhì)的應(yīng)用,通過角滿足的不等式,判斷角的終邊所在的象限.8、B【解析】

根據(jù)確定的兩個相鄰零點(diǎn)的值可以求出最小正周期,進(jìn)而利用正弦型最小正周期公式求出的值,最后把其中的一個零點(diǎn)代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當(dāng)時,,因此的坐標(biāo)為:.故選:B【點(diǎn)睛】本題考查了通過三角函數(shù)的圖象求參數(shù)問題,屬于基礎(chǔ)題.9、C【解析】

由放縮法可得出,再利用特殊值法以及不等式的基本性質(zhì)可判斷各選項(xiàng)中不等式的正誤.【詳解】,,可得.取,,,則A、D選項(xiàng)中的不等式不成立;取,,,則B選項(xiàng)中的不等式不成立;且,由不等式的基本性質(zhì)得,C選項(xiàng)中的不等式成立.故選:C.【點(diǎn)睛】本題考查不等式正誤的判斷,一般利用不等式的性質(zhì)或特殊值法進(jìn)行判斷,考查推理能力,屬于中等題.10、B【解析】

作出多面體的直觀圖,將各面的面積相加可得出該多面積的表面積.【詳解】由三視圖得知該幾何體的直觀圖如下圖所示:由直觀圖可知,底面是邊長為的正方形,其面積為;側(cè)面是等腰三角形,且底邊長,底邊上的高為,其面積為,且;側(cè)面是直角三角形,且為直角,,,其面積為,,的面積為;側(cè)面積為等腰三角形,底邊長,,底邊上的高為,其面積為.因此,該幾何體的表面積為,故選:B.【點(diǎn)睛】本題考查幾何體的三視圖以及幾何體表面積的計(jì)算,再利用三視圖求幾何體的表面積時,要將幾何體的直觀圖還原,并判斷出各個面的形狀,結(jié)合圖中數(shù)據(jù)進(jìn)行計(jì)算,考查空間想象能力與計(jì)算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用等差中項(xiàng)的基本性質(zhì)求得,,并利用等差中項(xiàng)的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項(xiàng)的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點(diǎn)睛】本題考查利用等差中項(xiàng)的性質(zhì)求值,考查計(jì)算能力,屬于基礎(chǔ)題.12、【解析】

由二倍角的余弦函數(shù)公式化簡解析式可得,根據(jù)三角函數(shù)的周期性及其求法即可得解.【詳解】.由周期公式可得:.故答案為【點(diǎn)睛】本題主要考查了二倍角的余弦函數(shù)公式的應(yīng)用,考查了三角函數(shù)的周期性及其求法,屬于基本知識的考查.13、【解析】

根據(jù)等比數(shù)列的通項(xiàng)公式求解公比再求和即可.【詳解】設(shè)公比為,則.故故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎(chǔ)題型.14、;【解析】

把已知式平方可求得,從而得,再由平方關(guān)系可求得.【詳解】∵,∴,即,∴,即,∴.故答案為.【點(diǎn)睛】本題考查同角三角函數(shù)關(guān)系,考查正弦的二倍角公式,在用平方關(guān)系求值時要注意結(jié)果可能有正負(fù),因此要判斷是否只取一個值.15、【解析】

由圖表,利用歸納法,得出,再利用疊加法,即可求解數(shù)列的通項(xiàng)公式.【詳解】由圖表,可得,,,,,可歸納為,利用疊加法可得:,故答案為.【點(diǎn)睛】本題主要考查了歸納推理的應(yīng)用,以及數(shù)列的疊加法的應(yīng)用,其中解答中根據(jù)圖表,利用歸納法,求得數(shù)列的遞推關(guān)系式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.16、4【解析】

由題意得為周期數(shù)列,集合有4個不同元素,得,在分別對取值討論即可.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,,由題意,存在正整數(shù),使得,又集合有4個不同元素,得,當(dāng)時,,即,,或(舍),,取,則,在單位圓上的4個等分點(diǎn)可取到4個不同的正弦值,即集合可取4個不同元素;當(dāng),,即,,在單位圓上的5個等分點(diǎn)不可能取到4個不同的正弦值,故舍去;同理可得:當(dāng),,,集合可取4個不同元素;當(dāng)時,,單位圓上至少9個等分點(diǎn)取4個不同的正弦值,必有至少3個相等的正弦值,不符合集合的元素互異性,故不可取應(yīng)舍去.故答案:4.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、集合元素的性質(zhì)以及三角函數(shù)的周期性,理解分析問題能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)用正弦定理將式子化為,進(jìn)行整理化簡可得的值,即得角B;(2)由余弦定理可得關(guān)于的等式,再利用基本不等式和三角形面積公式可得面積最大值。【詳解】(1)由題得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,則的面積的最大值為.【點(diǎn)睛】本題考查用正弦定理求三角形內(nèi)角,由余弦定理和基本不等式求三角形面積最大值,是基礎(chǔ)題型。18、(1)433(2)(3)【解析】

(1)設(shè)該校總?cè)藬?shù)為n人,由題意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)設(shè)所抽樣本中有m個女生,因?yàn)橛梅謱映闃拥姆椒ㄔ诟咭慌谐槿∫粋€容量為5的樣本,所以,解得m=2也就是抽取了2名女生,3名男生,分別記作S1,S2;B1,B2,B3,則從中任取2人的所有基本事件為(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13個,其中至少有1名女生的基本事件有7個:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以從中任取2人,至少有1名女生的概率為.(3)樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對值不超過3.5的數(shù)為1.4,2.6,1.2,2.7,1.3,1.3這6個數(shù),總的個數(shù)為2,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過3.5的概率為.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由最值和兩個零點(diǎn)計(jì)算出和的值,再由最值點(diǎn)以及的的范圍計(jì)算的值;(Ⅱ)先根據(jù)(Ⅰ)中解析式將表示出來,然后再利用兩角和的正弦公式計(jì)算的值.【詳解】解:(Ⅰ)由函數(shù)最大值為2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【點(diǎn)睛】根據(jù)三角函數(shù)圖象求解析式的步驟:(1)由最值確定的值;(2)由周期確定的值;(3)由最值點(diǎn)或者圖像上的點(diǎn)確定的取值.這里需要注意確定的值時,盡量不要選取平衡位置上的點(diǎn),這樣容易造成多解的情況.20、(1),;(2)。【解析】

(1)求得函數(shù),代入即可求解的值,令,即可求得函數(shù)的對稱軸的方程;(2)由(1),結(jié)合三角函數(shù)的圖象變換,求得,再根據(jù)三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由函數(shù),則,令,解得,即函數(shù)的對稱軸的方程為(2)由(1)可知函數(shù)的圖象向左平移個單位得到函數(shù)的圖象,可得的圖象,令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為.【點(diǎn)睛】本題主要考查了三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論