晶粒組織的三維模型構(gòu)建與定量表征研究_第1頁(yè)
晶粒組織的三維模型構(gòu)建與定量表征研究_第2頁(yè)
晶粒組織的三維模型構(gòu)建與定量表征研究_第3頁(yè)
晶粒組織的三維模型構(gòu)建與定量表征研究_第4頁(yè)
晶粒組織的三維模型構(gòu)建與定量表征研究_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

晶粒組織的三維模型構(gòu)建與定量表征研究摘要:

晶粒組織是材料微結(jié)構(gòu)中最基本、最重要的特征之一。構(gòu)建晶粒組織的三維模型并對(duì)其進(jìn)行定量表征具有理論和工程實(shí)踐價(jià)值。本文基于計(jì)算機(jī)圖像處理技術(shù),提出了一種晶體結(jié)構(gòu)三維重建方法,將二維顯微鏡圖像轉(zhuǎn)化為三維晶粒組織模型。接著我們與傳統(tǒng)手工重建方法做了對(duì)比,其中包括空間點(diǎn)云重建、Delaunay三角剖分、以及直接點(diǎn)擴(kuò)散法,結(jié)果表明本文提出的方法具有更高的重建精度和魯棒性。針對(duì)三維晶粒組織模型,我們采用網(wǎng)絡(luò)結(jié)構(gòu)基于圖卷積神經(jīng)網(wǎng)絡(luò)的無(wú)監(jiān)督拓?fù)鋵W(xué)習(xí)方法,自動(dòng)挖掘模型中晶粒之間的拓?fù)潢P(guān)系,并進(jìn)行拓?fù)湫再|(zhì)的特征提取和表征。最后,通過(guò)應(yīng)用所提出的方法于高熵合金晶粒組織的重建和表征,得到了高質(zhì)量的三維模型和更為精確的定量特征,驗(yàn)證了方法的有效性和優(yōu)越性。因此,該方法可以應(yīng)用于材料科學(xué)領(lǐng)域中各類材料的晶粒組織重建和表征研究。

關(guān)鍵詞:晶粒組織;計(jì)算機(jī)圖像處理;三維構(gòu)建;表征研究;圖卷積神經(jīng)網(wǎng)絡(luò)。

Abstract:

Grainmicrostructureisoneofthemostfundamentalandcriticalfeaturesinmaterialmicrostructure.Constructingathree-dimensionalmodelofgrainmicrostructureandquantitativelycharacterizingithavetheoreticalandengineeringvalue.Inthispaper,athree-dimensionalreconstructionmethodofcrystalstructureisproposedbasedoncomputerimageprocessingtechnology,whichcanconverttwo-dimensionalmicroscopicimagesintothree-dimensionalgrainmicrostructuremodels.Thenwecompareditwithtraditionalmanualreconstructionmethods,includingspacepointcloudreconstruction,Delaunaytriangulation,anddirectpointdiffusionmethod.Theresultsshowthattheproposedmethodhashigherreconstructionaccuracyandrobustness.Basedonthegeneratedthree-dimensionalgrainmicrostructuremodel,weemployagraphconvolutionalneuralnetwork(GCN)basedunsupervisedtopologicallearningmethodtoautomaticallyminethetopologicalrelationshipsamonggrainboundariesinthemodelandextractandcharacterizetopologicalproperties.Finally,themethodwasappliedtothereconstructionandcharacterizationofhigh-entropyalloygrainmicrostructure,resultinginhigh-qualitythree-dimensionalmodelsandmoreaccuratequantitativeproperties,whichhasshowntheeffectivenessandsuperiorityoftheproposedmethod.Therefore,thismethodcanbeappliedtothereconstructionandcharacterizationofgrainmicrostructureinvariousmaterialssciencefields.

Keywords:grainmicrostructure;computerimageprocessing;three-dimensionalreconstruction;characterizationresearch;graphconvolutionalneuralnetworkInrecentyears,thestudyofmicrostructurehasbecomeincreasinglyimportantinthefieldofmaterialsscience.Grainmicrostructureisoneoftheimportantmicrostructuresinmetallicmaterials,anditscharacterizationandreconstructionhavegreatsignificancefortheresearchofmaterialpropertiesandpropertiesoptimization.

Computerimageprocessingtechnologyhasbeenwidelyusedinthefieldofmicrostructureanalysis.However,thetraditionaltwo-dimensionalimageanalysismethodshavelimitationsindescribingthecomplexthree-dimensionalmicrostructure.Withthedevelopmentofthree-dimensionalreconstructiontechnology,thereconstructionandcharacterizationofgrainmicrostructurehavebeengreatlyimproved.

Graphconvolutionalneuralnetwork,asanewtypeofdeeplearningalgorithm,hasshownapowerfulabilitytoprocessdataingraphstructure.Byusingthismethod,researcherscanextractthefeaturesofthegrainmicrostructureinthree-dimensionalspace,andproducehigh-qualitythree-dimensionalmodels.

Intheapplicationofthismethod,researcherscanobtaintheoriginalimageofthegrainmicrostructurethroughamicroscope,andusecomputerimageprocessingtechnologytopreprocesstheimage.Then,theycanconstructathree-dimensionalgraphstructurebasedontheimagedata,andusegraphconvolutionalneuralnetworktorealizethereconstructionandcharacterizationofgrainmicrostructure.

Theapplicationofthismethodhasbeendemonstratedinthereconstructionandcharacterizationofgrainmicrostructureinvariousmetallicmaterials.Theresultsshowthatthethree-dimensionalmodelsobtainedbythismethodaremoreaccurateandreliablethantraditionalmethods.Therefore,thismethodhasbroadapplicationprospectsinthefieldofmaterialsscienceMoreover,thegraphconvolutionalneuralnetworkmethodcanalsobeextendedtostudytheevolutionofgrainmicrostructureduringmaterialsprocessing.Byusinginsituobservationsandsimulations,theevolutionofthegrainmicrostructurecanbecapturedandanalyzed.Thiscanprovideimportantinsightsintothemechanismsofgraingrowth,recrystallization,andtextureevolutioninmetallicmaterials.

Inaddition,thegraphconvolutionalneuralnetworkmethodcanalsobecombinedwithotheradvancedcharacterizationtechniques,suchaselectronbackscatterdiffraction(EBSD)andX-raydiffraction(XRD),tofurtherimprovetheaccuracyandreliabilityofgrainmicrostructurecharacterization.Forexample,byintegratingEBSDdatawiththree-dimensionalmodelsobtainedbygraphconvolutionalneuralnetwork,thelocalorientationandmisorientationdistributionofgrainscanbeanalyzedindetail.

Overall,thegraphconvolutionalneuralnetworkmethodisapowerfultoolforthereconstructionandcharacterizationofgrainmicrostructureinmetallicmaterials.Itsabilitytocapturecomplexspatialcorrelationsandtopologicalstructuresofgrainmicrostructuremakeitsuperiortotraditionalmethods.Withthedevelopmentofhigh-performancecomputingandadvancedimagingtechniques,webelievethatthismethodwillplayanincreasinglyimportantroleinthefieldofmaterialsscienceInadditiontoitsapplicationinthereconstructionandcharacterizationofgrainmicrostructure,thegraphconvolutionalneuralnetwork(GCNN)methodhasalsoshowngreatpotentialinotherareasofmaterialsscience.

OnepromisingapplicationofGCNNisinthepredictionofmaterialproperties.BytrainingaGCNNonalargedatasetofmaterialswithknownproperties,thenetworkcanlearntopredictthepropertiesofnewmaterialsbasedontheirstructuralfeatures.Thisapproachhasbeenusedtopredictthemechanicalandthermalpropertiesofvariousmaterials,includingmetals,ceramics,andpolymers.

AnotherareawhereGCNNhasshownpromiseisintheanalysisofmoleculardynamicssimulations.Moleculardynamicssimulationsarewidelyusedtostudythebehaviorofatomsandmoleculesinmaterials,butanalyzingthevastamountsofdatageneratedbythesesimulationscanbechallenging.GCNNcanbeusedtoextractrelevantfeaturesfromthesimulationdataandidentifypatternsandcorrelationsthatwouldbedifficulttodetectusingtraditionalmethods.

GCNNhasalsobeenusedtoanalyzeanddesignnewmaterialsatthenanoscale.Byincorporatingfeaturessuchassurfacearea,poresize,andnanoparticleshapeintothenetwork,GCNNcanbeusedtopredicttheperformanceofmaterialsinapplicationssuchascatalysis,energystorage,anddrugdelivery.

Overall,thegraphconvolutionalneural

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論