版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
首先要突出說明的是選題的現(xiàn)實價值,每一個研究的目的都是為了指導現(xiàn)實生活,一定要講清本選題的研究有什么實際作用、解決什么問題;其次再寫課題的理論和學術(shù)價值。5.4.1拋體運動的規(guī)律第五章
拋體運動1.條件:①初速度沿水平方向②只受重力作用2.運動性質(zhì):勻變速曲線運動(a=g)3.受力特點:水平方向:不受力豎直方向:僅受重力4.研究方法:運動的合成與分解復習導入平拋運動平拋運動的速度01vCOxytθvxvyv0x方向:以v0做勻速直線運動;y方向:初速度為零,a=g,做自由落體運動。由勾股定理可得物體在任意時刻的合速度大小為:故物體在下落過程中合速度越來越大;合速度的方向:隨著物體的下落,偏角θ越來越大。速度和它在x、y方向上的分速度θ叫速度偏轉(zhuǎn)角規(guī)律:平拋運動任意相等時間Δt
內(nèi)的速度變化量相同。(重點)Δv=gΔt方向恒為豎直向下ΔvΔvΔvBOxyΔtv0v1Av2v3ΔtCΔtOxyv0v1v2v3vy1vy3vy2平拋運動的速度變化特點平拋運動的位移與軌跡02COxytv0x
=v0t位移方向αxy合位移水平分位移豎直分位移軌跡方程
x
=v0tɑ叫位移偏轉(zhuǎn)角消去
t得:結(jié)論:平拋運動的軌跡是一條拋物線。(即平拋物體的運動軌跡是一個頂點在原點、開口向下的拋物線)
如圖所示,在
x軸上作出幾個等距離的點A1、A2、A3、…,把線段OA1
的長度記為l,則OA2=2l,OA3=3l,由A1、A2、A3、…向下作垂線,與軌跡的交點記為M1、M2、M3、…。若軌跡是一條拋物線,則各點的y
坐標和x
坐標應該具有y=ax2的形式(a
是待定常量),用刻度尺測量某點的x、y
兩個坐標值,代入y=ax2求出a。再測量其他幾個點的x、y坐標值,代入y=ax2,若在誤差范圍內(nèi)都滿足這個關(guān)系式,則這條曲線是一條拋物線。一般的拋體運動031.概念:如果物體被拋出時的速度v0不沿水平方向,而是斜向上方或斜向下方拋出去,且只在重力作用下所做的運動叫做斜拋運動。2.斜拋運動的性質(zhì):由于斜拋運動的加速度是重力加速度,且與速度方向有夾角,因此,斜拋運動是勻變速曲線運動.3.斜拋運動的特點(1)受力特點:在水平方向不受力,加速度為0;在豎直方向只受重力,加速度為g。即:ax=0、ay=g。(3)速度變化特點:由于斜拋運動的加速度為定值,因此,在相等的時間內(nèi)速度變化量的大小相等,方向均豎直向下,Δv=gΔt。
(2)初速度特點:以斜上拋運動為例,把斜向上方的初速度分解到水平方向和豎直方向,如圖所示,水平方向以vx=v0cosθ
做勻速直線運動;豎直方向以v0sinθ為初速度做豎直上拋運動。(4)對稱性特點(斜上拋)②時間對稱:關(guān)于過軌跡最高點(vx=v0cosθ,vy=0
)的豎直線對稱的曲線上升時間等于下降時間,這是由豎直上拋運動的對稱性決定的。①速度對稱:軌跡上關(guān)于過軌跡最高點的豎直線對稱的兩點速度大小相等,水平方向速度相同,豎直方向速度等大反向。③軌跡對稱:其運動軌跡關(guān)于過最高點的豎直線對稱。t上
=t下
=Vosin?g位移:x=voxt=v0tcosθ位移:速度:vy=v0y-gt=v0sinθ-gt速度:vx=v0x=v0cosθ勻速直線運動豎直上拋運動X軸:Y軸:v0yv0xv0xy0vvxvy合速度大小:合速度方向:合位移大小:syx合位移方向:分解4.斜拋運動的規(guī)律5、斜拋運動的射程(1)一炮彈以初速度v0斜向上方飛出炮筒,初速度與水平方向夾角為θ,請根據(jù)下圖求解炮彈在空中的飛行時間、射高和射程.射高Y射程X答案先建立直角坐標系,將初速度v0分解為:v0x=v0cosθ,v0y=v0sinθ可見,給定v0,當θ=45°時,射程達到最大值Xmax=平拋課堂小結(jié)斜拋拋體運動的規(guī)律思路:化曲為直方法:運動的分解水平方向:豎直方向:速度
位移x=v0tcosvx=v0cosvy=v0sin-gt典例分析041.一架勻減速水平飛行的戰(zhàn)斗機為了能擊中地面上的目標,則投彈的位置是()A.在目標的正上方B.在飛抵目標之后C.在飛抵目標之前D.在目標的正上方,但離目標距離近一些C2.“投圈”游戲中的投圈可以看成是平拋運動。一位同學第一次剛好投中了一件物品,第二次想投中一件稍遠一點的物品,他應該()A.在原投拋點增大一點投拋速度B.在原投拋點減小一點投拋速度C.在原投拋點上方增大2倍投拋速度 D.在原投拋點下方減小一點投拋速度A3.如圖所示,將甲、乙兩個相同的小球分別以初速度
、
同時水平拋出,已知拋出點乙在甲的正上方且離水平面的高度是甲的4倍,落地點到拋出點的水平距離也是甲的4倍,不計空氣阻力,下列說法正確的是()A.它們的初速度相等 B.乙的初速度是甲的4倍C.它們落地時的速度方向相同 D.甲落地前,乙一直在甲的正上方C4.如圖所示,在豎直平面內(nèi)固定一半圓形軌道,O為圓心,AB為水平直徑。有一小球從A點以不同的初速度向右水平拋出,不計空氣阻力,則小球()A.初速度越大,運動時間越長B.初速度不同,運動時間一定不同C.落到軌道的瞬間,速度方向不可能沿半徑方向D.落到軌道的瞬間,速度方向的反向延長線與水平直徑的交點在O點的左側(cè)CDC.若小球落到半圓形軌道的瞬間垂直撞擊半圓形軌道,即速度方向沿半徑方向,則此時速度方向與水平方向的夾角是此時位移方向與水平方向夾角的2倍,但根據(jù)平拋運動推論可知:同一位置速度方向與水平方向夾角的正切值是此時位移與水平方向夾角正切值的兩倍。由數(shù)學知識可知兩者相互矛盾,則小球的速度方向不會沿半徑方向,故C正確;D.小球做平拋運動,根據(jù)平拋運動推論可知,落到軌道的瞬間,此時速度方向的反向延長線交于此時小球水平位移的中點,由于小球落在軌道上的水平位移小于水平直徑AB,所以可推知速度方向的反向延長線與水平直徑的交點一定在O點的左側(cè),故D正確。5.如圖所示為四分之一圓柱體OAB的豎直截面,半徑為R,在B點正上方的C點水平拋出一個小球(可視為質(zhì)點),小球軌跡恰好在D點與圓柱體相切,OD與OB的夾角為60°,重力加速度為g,求:(1)小球的初速度;(2)C點到O點的距離。(1)小球從C點到D點過程,水平方向有小球經(jīng)過D點時,有(2)小球從C點到D點,下落的高度為根據(jù)幾何關(guān)系可得,C點到O點的距離為檢測041.如圖所示的半圓形凹槽,半徑為R.從左側(cè)圓周上與圓心O點等高的A處平拋一小球.若小球初速度為
,
為小球擊中凹槽位置與圓心O連線與豎直方向的夾角,則(??).A.B.C.D.若小球的初速度可以任意選擇,則小球有可能垂直擊中凹槽AABC.幾何關(guān)系有平拋運動D.速度反向延長線必然均分水平位移,所以小球不可能垂直擊中凹槽2.如圖所示,將一個小球(可視為質(zhì)點)從半球形坑的邊緣A以速度
沿直徑方向水平拋出,落在坑壁某點B,忽略空氣阻力。對A到B過程說法中正確的是()A.
越大,小球運動時間越長B.
越大,小球運動位移越大C.
越大,小球運動加速度越大D.
取適當值,小球可能垂直坑壁落入坑中B3.如圖所示,一演員表演飛刀演技,由O點先后拋出完全相同的三把飛刀,分別垂直打在豎直木板上M、N、P三點。假設不考慮飛刀的轉(zhuǎn)動和空氣阻力,并可將其看作質(zhì)點,已知O、M、N、P四點距離水平地面高度分別為h、4h、3h、2h,以下說法正確的是(
)A.三把飛刀在擊中板時速度相同B.三把飛刀的飛行時間之比為C.三把飛刀的初速度的豎直分量之比為D.三把飛刀的初速度的水平分量之比為BC4.小明在某次籃球比賽投籃過程中,第一次出手,籃球的初速度方向與豎直方向的夾角53°;第二次出手,籃球的初速度方向與豎直方向的夾角為37°;兩次出手的位置在同一豎直線上,結(jié)果兩次籃球正好垂直撞擊到籃板同一位置點C,不計空氣阻力,已知sin53°=0.8,sin37°=0.6,則從籃球出手到運動到點C的過程中,下列說法正確的是()A.前后兩次運動時間的比值為3:4 B.前后兩次上升的最大高度的比值為1:9C.前后兩次上升的最大高度的比值為9:16 D.兩球的初速度大小相同ACBC.設投籃處與籃板的水平距離為x,根據(jù)做平拋運動的物體任意時刻速度的反向延長線過水平位移的中點,所以有A.根據(jù)D.兩球水平位移相同,時間不同,則兩球的初速度大小一定不相同5如圖所示,用6m長的輕繩將A、B兩球相連,兩球相隔0.8s先后從C點以4.5m/s的初速度水平拋出.那么,將A球拋出后經(jīng)多長時間,A、B間的輕繩剛好被拉直?
6.在農(nóng)田灌溉中往往需要擴大灌溉面積來提高灌溉率,常用的方法是在水管的末端加裝一段細管,如圖所示。若所加裝的細管直徑為水管直徑的一半,保持水管水平且距水平農(nóng)田的高度不變,水管的直徑遠小于水管距水平農(nóng)田的高度,不考慮空氣阻力的影響,下列說法正確的是(
)A.加裝細管后,單位時間內(nèi)的出水量變?yōu)樵瓉淼?倍B.加裝細管后,噴出的水的水平射程變?yōu)樵瓉淼?倍C.加裝細管前后,空中水的質(zhì)量不變D.加裝細管后,灌溉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防溺水安全演講稿15篇
- 小班家長會發(fā)言稿模板(范文10篇)
- 離婚應訴答辯狀
- 社會公德演講稿
- 銀行競聘演講稿5分鐘左右(7篇范文)
- 木偶奇遇記讀書筆記14篇
- 《三毛流浪記》讀后感集錦15篇
- 2024年不銹鋼、鎳纖維及纖維氈項目資金需求報告代可行性研究報告
- 2023年閥門和龍頭資金需求報告
- 二年級英語電子教案下冊
- (高清版)DZT 0346-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 油頁巖、石煤、泥炭
- 高校意識形態(tài)安全教育
- 昆明撫仙湖鰭魚灣棋盤山度假娛樂旅游區(qū)總體規(guī)劃方案樣本
- 2024年大學試題(法學)-物證技術(shù)學筆試歷年真題薈萃含答案
- T-SHNA 0005-2023 成人住院患者腸外營養(yǎng)輸注護理
- 品牌管理 課件 第2章 品牌定位
- 數(shù)控機床概述(完整版)
- 量子最優(yōu)化算法在金融業(yè)的應用研究報告
- 人教版部編五年級道法期中試題及答案
- 國際法-利比亞-馬耳他大陸架劃界案
- 2024年四川省達州水務集團有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論