




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)
D.(-,-2)2.去年12月24日全國大約有1230000人參加研究生招生考試,1230000這個數(shù)用科學記數(shù)法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1053.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.4.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數(shù)為()A.80° B.90° C.100° D.102°5.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°6.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應相等的兩個三角形全等D.有一邊對應相等的兩個等邊三角形全等7.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山8.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.9.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°10.如圖所示,的頂點是正方形網格的格點,則的值為()A. B. C. D.11.把8a3﹣8a2+2a進行因式分解,結果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)212.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,點C在反比例函數(shù)的圖象上,過點C的直線與x軸、y軸分別交于點A、B,且,已知的面積為1,則k的值為______.14.如圖,一艘船向正北航行,在A處看到燈塔S在船的北偏東30°的方向上,航行12海里到達B點,在B處看到燈塔S在船的北偏東60°的方向上,此船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是_____海里(不近似計算).15.若|a|=2016,則a=___________.16.若am=5,an=6,則am+n=________.17.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.18.如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發(fā)的時間x分鐘的函數(shù)關系圖,則甲的家和乙的家相距_____米.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當?shù)陌霃綖?時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標的取值范圍.20.(6分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?21.(6分)如圖,在△ABC中,∠C=90°,∠CAB=50°,按以下步驟作圖:①以點A為圓心,小于AC長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于EF長為半徑畫弧,兩弧相交于點G;③作射線AG,交BC邊于點D.則∠ADC的度數(shù)為()A.40° B.55° C.65° D.75°22.(8分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.23.(8分)(2017四川省內江市)小明隨機調查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據圖中信息,解答下列問題:(1)這項被調查的總人數(shù)是多少人?(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.24.(10分)如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數(shù)據:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)25.(10分)2018年“植樹節(jié)”前夕,某小區(qū)為綠化環(huán)境,購進200棵柏樹苗和120棵棗樹苗,且兩種樹苗所需費用相同.每棵棗樹苗的進價比每棵柏樹苗的進價的2倍少5元,每棵柏樹苗的進價是多少元.26.(12分)“C919”大型客機首飛成功,激發(fā)了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據圖中數(shù)據,求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數(shù)點后一位)27.(12分)如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的表達式;過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關系2、A【解析】分析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:1230000這個數(shù)用科學記數(shù)法可以表示為故選A.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.3、B【解析】
根據菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.4、A【解析】分析:根據平行線性質求出∠A,根據三角形內角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質:兩直線平行,內錯角相等.三角形內角和定理:三角形內角和為180°.5、B【解析】
根據題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據平行線的性質即可解答【詳解】根據題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等6、C【解析】解:A.外角為120°,則相鄰的內角為60°,根據有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當兩個三角形中兩邊及一角對應相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.7、A【解析】
根據兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.8、B【解析】
拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),
可設新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.9、C【解析】【分析】根據相似多邊形性質:對應角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關鍵點:理解相似多邊形性質.10、B【解析】
連接CD,求出CD⊥AB,根據勾股定理求出AC,在Rt△ADC中,根據銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質,直角三角形的判定的應用,關鍵是構造直角三角形.11、C【解析】
首先提取公因式2a,進而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.12、C【解析】
解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據題意可以設出點A的坐標,從而以得到點C和點B的坐標,再根據的面積為1,即可求得k的值.【詳解】解:設點A的坐標為,過點C的直線與x軸,y軸分別交于點A,B,且,的面積為1,點,點B的坐標為,,解得,,故答案為:1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點的坐標特征、反比例函數(shù)圖象上點的坐標特征,解題關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.14、6【解析】試題分析:過S作AB的垂線,設垂足為C.根據三角形外角的性質,易證SB=AB.在Rt△BSC中,運用正弦函數(shù)求出SC的長.解:過S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB?sin60°=1×=6(海里).即船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是6海里.故答案為:6.15、±1【解析】試題分析:根據零指數(shù)冪的性質(),可知|a|=1,座椅可知a=±1.16、1.【解析】
根據同底數(shù)冪乘法性質am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數(shù)冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.17、40°【解析】
由∠A=30°,∠APD=70°,利用三角形外角的性質,即可求得∠C的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數(shù).【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質.此題難度不大,解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應用.18、5200【解析】設甲到學校的距離為x米,則乙到學校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學校距離為2400米,乙到學校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【點睛】本題考查一次函數(shù)的應用,二元一次方程組的應用等知識,解題的關鍵是讀懂圖象信息.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①、;②(2)或,.【解析】
據若,則點P為的“特征點”,可得答案;根據若,則點P為的“特征點”,可得,根據等腰直角三角形的性質,可得答案;根據垂線段最短,可得PC最短,根據等腰直角三角形的性質,可得,根據若,則點P為的“特征點”,可得答案.【詳解】解:,,點是的“特征點”;,,點是的“特征點”;,,點不是的“特征點”;故答案為、如圖1,在上,若存在的“特征點”點P,點O到直線的距離.直線交y軸于點E,過O作直線于點H.因為.在中,可知.可得同理可得.的取值范圍是:如圖2,設C點坐標為,直線,.,,,..,線段MN上的所有點都不是的“特征點”,,即,解得或,點C的橫坐標的取值范圍是或,.故答案為:(1)①、;②(2)或,.【點睛】本題考查一次函數(shù)綜合題,解的關鍵是利用若,則點P為的“特征點”;解的關鍵是利用等腰直角三角形的性質得出OE的長;解的關鍵是利用等腰直角三角形的性質得出,又利用了.20、100或200【解析】試題分析:此題利用每一臺冰箱的利潤×每天售出的臺數(shù)=每天盈利,設出每臺冰箱應降價x元,列方程解答即可.試題解析:設每臺冰箱應降價x元,每件冰箱的利潤是:元,賣(8+×4)件,列方程得,(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到實惠,只能取x=200,答:每臺冰箱應降價200元.考點:一元二次方程的應用.21、C.【解析】試題分析:由作圖方法可得AG是∠CAB的角平分線,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故選C.考點:作圖—基本作圖.22、(1)矩形的周長為4m;(2)矩形的面積為1.【解析】
(1)根據題意和矩形的周長公式列出代數(shù)式解答即可.(2)根據題意列出矩形的面積,然后把m=7,n=4代入進行計算即可求得.【詳解】(1)矩形的長為:m﹣n,矩形的寬為:m+n,矩形的周長為:2[(m-n)+(m+n)]=4m;(2)矩形的面積為S=(m+n)(m﹣n)=m2-n2,當m=7,n=4時,S=72-42=1.【點睛】本題考查了矩形的周長與面積、列代數(shù)式問題、平方差公式等,解題的關鍵是根據題意和矩形的性質列出代數(shù)式解答.23、(1)50;(2)108°;(3).【解析】分析:(1)根據B組的人數(shù)和所占的百分比,即可求出這次被調查的總人數(shù),從而補全統(tǒng)計圖;用360乘以A組所占的百分比,求出A組的扇形圓心角的度數(shù),再用總人數(shù)減去A、B、D組的人數(shù),求出C組的人數(shù);(2)畫出樹狀圖,由概率公式即可得出答案.本題解析:解:(1)調查的總人數(shù)是:19÷38%=50(人).C組的人數(shù)有50-15-19-4=12(人),補全條形圖如圖所示.(2)畫樹狀圖如下.共有12種等可能的結果,恰好選中甲的結果有6種,∴P(恰好選中甲)=.點睛:本題考查了列表法與樹狀圖、條形統(tǒng)計圖的綜合運用.熟練掌握畫樹狀圖法,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.24、(1);(2)95m.【解析】
(1)過點M作MD⊥AB于點D,易求AD的長,再由BD=MD可得BD的長,即M到AB的距離;
(2)過點N作NE⊥AB于點E,易證四邊形MDEN為平行四邊形,所以ME的長可求出,再根據MN=AB-AD-BE計算即可.【詳解】解:(1)過點M作MD⊥AB于點D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴BD=MD=,∵AB=600m,∴AD+BD=600m,∴AD+,∴AD=(300)m,∴BD=MD=(900-300),∴點M到AB的距離(900-300).(2)過點N作NE⊥AB于點E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四邊形MDEN為平行四邊形,∴NE=MD=(900-300),MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴BEm,∴MN=AB-AD-BE.【點睛】考查了解直角三角形的應用,通過解直角三角形能解決實際問題中的很多有關測量問題,根據題目已知特點選用適當銳角三角函數(shù)或邊角關系去解直角三角形,得到數(shù)學問題的答案,再轉化得到實際問題的答案是解題的關鍵.25、15元.【解析】
首先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 纖支鏡檢查的護理
- 1歲以下嬰兒培訓課件
- 房地產項目合作開發(fā)合同書
- 語文課外閱讀特色課程
- 樂器電商課程介紹
- 規(guī)范楷書系統(tǒng)課件
- 德法形策課程介紹
- 河北石油職業(yè)技術大學《生物醫(yī)學工程整合課程》2023-2024學年第二學期期末試卷
- 人教版數(shù)學六年級下冊第二單元《百分數(shù)(二)》同步練習含答案
- 遂寧能源職業(yè)學院《插畫創(chuàng)作》2023-2024學年第二學期期末試卷
- 三重一大培訓課件
- 綿竹事業(yè)單位筆試試題2024
- PCB設計可靠性評估
- 物質安全資料表(MSDS)
- (高清版)TDT 1048-2016 耕作層土壤剝離利用技術規(guī)范
- GA/T 2015-2023芬太尼類藥物專用智能柜通用技術規(guī)范
- 中信證券公司招聘考試題庫
- 審計基礎與實務職業(yè)能力訓練蔡曉方習題答案
- 2024臨床免疫學定性檢驗程序性能驗證指南
- 新人教版五年級小學數(shù)學全冊奧數(shù)(含答案)
- 四川云倉電商倉配一體化方案課件
評論
0/150
提交評論