江蘇省徐州市睢寧縣第一中學(xué)2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁
江蘇省徐州市睢寧縣第一中學(xué)2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁
江蘇省徐州市睢寧縣第一中學(xué)2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁
江蘇省徐州市睢寧縣第一中學(xué)2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁
江蘇省徐州市睢寧縣第一中學(xué)2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省徐州市睢寧縣第一中學(xué)2024學(xué)年高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點(diǎn),,分別為左、右焦點(diǎn),為橢圓上一點(diǎn),下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個(gè)內(nèi)角為2.如圖,已知,分別是橢圓的左、右焦點(diǎn),現(xiàn)以為圓心作一個(gè)圓恰好經(jīng)過橢圓的中心并且交橢圓于點(diǎn),.若過點(diǎn)的直線是圓的切線,則橢圓的離心率為()A. B.C. D.3.對于實(shí)數(shù)a,b,c,下列命題中的真命題是()A.若,則 B.,則C.若,,則, D.若,則4.已知等差數(shù)列的前n項(xiàng)和為,且,,則為()A. B.C. D.5.下列說法正確的有()個(gè).①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項(xiàng).A.1 B.2C.3 D.06.已知雙曲線方程為,過點(diǎn)的直線與雙曲線只有一個(gè)公共點(diǎn),則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條7.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.8.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.99.設(shè)為實(shí)數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓10.若圓C:上有到的距離為1的點(diǎn),則實(shí)數(shù)m的取值范圍為()A. B.C. D.11.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種12.已知分別表示隨機(jī)事件發(fā)生的概率,那么是下列哪個(gè)事件的概率()A事件同時(shí)發(fā)生B.事件至少有一個(gè)發(fā)生C.事件都不發(fā)生D事件至多有一個(gè)發(fā)生二、填空題:本題共4小題,每小題5分,共20分。13.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面上到兩定點(diǎn)A,B的距離之比為常數(shù)的點(diǎn)的軌跡是—個(gè)圓心在直線上的圓.該圓被稱為阿氏圓,如圖,在長方體中,,點(diǎn)E在棱上,,動(dòng)點(diǎn)P滿足,若點(diǎn)P在平面內(nèi)運(yùn)動(dòng),則點(diǎn)P對應(yīng)的軌跡的面積是___________;F為的中點(diǎn),則三棱錐體積的最小值為___________.14.已知拋物線,則的準(zhǔn)線方程為______.15.已知雙曲線的左、右焦點(diǎn)分別為,,O為坐標(biāo)原點(diǎn),點(diǎn)M是雙曲線左支上的一點(diǎn),若,,則雙曲線的離心率是____________16.已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于A,B兩點(diǎn),線段AB的長為5,若,那么△的周長是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)曲線在點(diǎn)(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當(dāng),求a的取值范圍.18.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大??;(2)若cosA=,求的值.19.(12分)已知數(shù)列的首項(xiàng),且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前n項(xiàng)和.20.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值21.(12分)已知的內(nèi)角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.22.(10分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】先求出橢圓的頂點(diǎn)和焦點(diǎn)坐標(biāo),對于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個(gè)內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【題目詳解】∵橢圓∴對于A,若,則,∴,∴,不滿足條件,故A不符合條件;對于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對于D,四邊形的一個(gè)內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【題目點(diǎn)撥】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.2、A【解題分析】由切線的性質(zhì),可得,,再結(jié)合橢圓定義,即得解【題目詳解】因?yàn)檫^點(diǎn)的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A3、C【解題分析】對于選項(xiàng)A,可以舉反例判斷;對于選項(xiàng)BCD可以利用作差法判斷得解.【題目詳解】解:A.若,則不一定成立.如:.所以該選項(xiàng)錯(cuò)誤;B.,所以,所以該選項(xiàng)錯(cuò)誤;C.,所以該選項(xiàng)正確;D.,所以該選項(xiàng)錯(cuò)誤.故選:C4、C【解題分析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【題目詳解】由題意知:,解得,則.故選:C.5、A【解題分析】由向量數(shù)量積為實(shí)數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【題目詳解】對于①,與共線,與共線,故不一定成立,故①正確;對于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯(cuò)誤;對于③,若,取,則數(shù)不是數(shù)的等比中項(xiàng),故③錯(cuò)誤故選:A6、A【解題分析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【題目詳解】解:雙曲線的漸近線方程為,右頂點(diǎn)為.①直線與雙曲線只有一個(gè)公共點(diǎn);②過點(diǎn)平行于漸近線時(shí),直線與雙曲線只有一個(gè)公共點(diǎn);③設(shè)過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.7、A【解題分析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點(diǎn)即可求解.【題目詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A8、B【解題分析】先求得直線過定點(diǎn),再根據(jù)當(dāng)點(diǎn)與圓心連線垂直于直線l時(shí),被圓O截得的弦長最短求解.【題目詳解】因?yàn)橹本€方程,即為,所以直線過定點(diǎn),因?yàn)辄c(diǎn)在圓的內(nèi)部,當(dāng)點(diǎn)與圓心連線垂直于直線l時(shí),被圓O截得的弦長最短,點(diǎn)與圓心(0,0)的距離為,此時(shí),最短弦長為,故選:B9、A【解題分析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【題目詳解】解:對A:因?yàn)榍€C的方程中都是二次項(xiàng),所以根據(jù)拋物線標(biāo)準(zhǔn)方程的特征曲線C不可能是拋物線,故選項(xiàng)A正確;對B:當(dāng)時(shí),曲線C為雙曲線,故選項(xiàng)B錯(cuò)誤;對C:當(dāng)時(shí),曲線C為圓,故選項(xiàng)C錯(cuò)誤;對D:當(dāng)且時(shí),曲線C為橢圓,故選項(xiàng)D錯(cuò)誤;故選:A.10、C【解題分析】利用圓與圓的位置關(guān)系進(jìn)行求解即可.【題目詳解】將圓C的方程化為標(biāo)準(zhǔn)方程得,所以.因?yàn)閳AC上有到的距離為1的點(diǎn),所以圓C與圓:有公共點(diǎn),所以因?yàn)椋?,解得,故選:C11、C【解題分析】先把4本書按2,1,1分為3組,再全排列求解.【題目詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C12、C【解題分析】表示事件至少有一個(gè)發(fā)生概率,據(jù)此得到答案.【題目詳解】分別表示隨機(jī)事件發(fā)生的概率,表示事件至少有一個(gè)發(fā)生的概率,故表示事件都不發(fā)生的概率.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解題分析】建立空間直角坐標(biāo)系,根據(jù),可得對應(yīng)的軌跡方程;先求的面積,其是固定值,要使體積最小,只需求點(diǎn)到平面的距離的最小值即可.【題目詳解】分別以為軸建系,設(shè),而,,,,.由,有,化簡得對應(yīng)的軌跡方程為.所以點(diǎn)P對應(yīng)的軌跡的面積是.易得的三個(gè)邊即是邊長為為的等邊三角形,其面積為,,設(shè)平面的一個(gè)法向量為,則有,可取平面的一個(gè)法向量為,根據(jù)點(diǎn)的軌跡,可設(shè),,所以點(diǎn)到平面的距離,所以故答案為:;14、##【解題分析】根據(jù)拋物線的方程求出的值即得解.【題目詳解】解:因?yàn)閽佄锞€,所以,所以的準(zhǔn)線方程為.故答案為:15、5【解題分析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【題目詳解】設(shè)雙曲線的焦距為,則,因?yàn)椋?,因?yàn)?,不妨設(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.16、16【解題分析】利用橢圓的定義可知,又△的周長,即可求焦點(diǎn)三角形的周長.【題目詳解】由橢圓定義知:,所以△的周長為.故答案為:16.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析(3)【解題分析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導(dǎo)數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導(dǎo)數(shù),分類討論導(dǎo)數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因?yàn)榍€在點(diǎn)(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以當(dāng)時(shí),取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當(dāng),即,(),設(shè),(),則,當(dāng)時(shí),由得,此時(shí),此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí),此時(shí)在時(shí)單調(diào)遞增,,適合題意;當(dāng)時(shí),,此時(shí)在內(nèi),,在內(nèi),,故,顯然時(shí),,不滿足當(dāng)恒成立,綜上述:.18、(1)(2)【解題分析】(1)利用正弦定理、余弦定理化簡已知條件,求得,由此求得.(2)先求得,結(jié)合兩角差的正弦公式求得.【小問1詳解】,,即,,,.【小問2詳解】由,可得,.19、(1)證明見解析;(2)當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.【解題分析】(1)根據(jù)等比數(shù)列的定義進(jìn)行證明即可;(2)利用分組求和法,結(jié)合錯(cuò)位相減法進(jìn)行求解即可.【小問1詳解】由題知:所以又因?yàn)樗运詳?shù)列為以-1為首項(xiàng),-1為公比的等比數(shù)列;【小問2詳解】由(1)知:,所以,,記,所以,當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),;記兩式相減得:,所以,所以,當(dāng)偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.20、(1)見解析;(2).【解題分析】(1)推導(dǎo)出,取BC的中點(diǎn)F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點(diǎn),,所在直線分別為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【題目詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點(diǎn)F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個(gè)法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【題目點(diǎn)撥】用空間向量求解立體幾何問題的注意點(diǎn)(1)建立坐標(biāo)系時(shí)要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點(diǎn)的坐標(biāo)(2)用平面的法向量求二面角的大小時(shí),要注意向量的夾角與二面角大小間的關(guān)系,這點(diǎn)需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論21、(1)(2)6【解題分析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結(jié)合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得

,由正弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論