上海市大團(tuán)中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第1頁(yè)
上海市大團(tuán)中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第2頁(yè)
上海市大團(tuán)中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第3頁(yè)
上海市大團(tuán)中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第4頁(yè)
上海市大團(tuán)中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖所示,在邊長(zhǎng)為2的正方形中有一封閉曲線圍成的陰影區(qū)域,向該正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域的概率是,則該陰影區(qū)域的面積是()A.3 B. C. D.2.已知向量,,,則實(shí)數(shù)的值為()A. B. C.2 D.33.在明朝程大位《算法統(tǒng)宗》中,有這樣一首歌謠,叫浮屠增級(jí)歌:遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增;共燈三百八十一,請(qǐng)問層三幾盞燈.這首古詩(shī)描述的浮屠,現(xiàn)稱寶塔.本浮屠增級(jí)歌意思是:有一座7層寶塔,每層懸掛的紅燈數(shù)是上一層的2倍,寶塔中共有燈381盞,問這個(gè)寶塔第3層燈的盞數(shù)有()A. B. C. D.4.已知:平面內(nèi)不再同一條直線上的四點(diǎn)、、、滿足,若,則()A.1 B.2 C. D.5.同時(shí)擲兩枚骰子,則向上的點(diǎn)數(shù)相等的概率為()A. B. C. D.6.在中,已知,且,則的值是()A. B. C. D.7.《九章算術(shù)》卷第五《商功》中,有問題“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高一丈.問積幾何?”,意思是:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬丈,長(zhǎng)丈;上棱長(zhǎng)丈,無(wú)寬,高丈(如圖).問它的體積是多少?”這個(gè)問題的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈8.某興趣小組合作制作了一個(gè)手工制品,并將其繪制成如圖所示的三視圖,其中側(cè)視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.9.已知,,且,則向量在向量上的投影等于()A.-4 B.4 C. D.10.設(shè)等差數(shù)列的前n項(xiàng)和為,首項(xiàng),公差,,則最大時(shí),n的值為()A.11 B.10 C.9 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____12.無(wú)窮等比數(shù)列的首項(xiàng)是某個(gè)正整數(shù),公比為單位分?jǐn)?shù)(即形如:的分?jǐn)?shù),為正整數(shù)),若該數(shù)列的各項(xiàng)和為3,則________.13.若,則_________.14.函數(shù)的單調(diào)遞增區(qū)間為______.15.已知向量,,若向量與垂直,則__________.16.已知圓C的方程為,一定點(diǎn)為A(1,2),要使過A點(diǎn)作圓的切線有兩條,則a的取值范圍是____________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)在上,點(diǎn)在上,設(shè)矩形的面積為,(1)按下列要求寫出函數(shù)的關(guān)系式:①設(shè),將表示成的函數(shù)關(guān)系式;②設(shè),將表示成的函數(shù)關(guān)系式,(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出的最大值.18.已知數(shù)列{bn}的前n項(xiàng)和,n∈N*.(1)求數(shù)列{bn}的通項(xiàng)公式;(2)記,求數(shù)列{cn}的前n項(xiàng)和Sn;(3)在(2)的條件下,記,若對(duì)任意正整數(shù)n,不等式恒成立,求整數(shù)m的最大值.19.某校進(jìn)行學(xué)業(yè)水平模擬測(cè)試,隨機(jī)抽取了名學(xué)生的數(shù)學(xué)成績(jī)(滿分分),繪制頻率分布直方圖,成績(jī)不低于分的評(píng)定為“優(yōu)秀”.(1)從該校隨機(jī)選取一名學(xué)生,其數(shù)學(xué)成績(jī)?cè)u(píng)定為“優(yōu)秀”的概率;(2)估計(jì)該校數(shù)學(xué)平均分(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).20.已知,函數(shù),.(1)若在上單調(diào)遞增,求正數(shù)的最大值;(2)若函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍.21.求值:(1)一個(gè)扇形的面積為1,周長(zhǎng)為4,求圓心角的弧度數(shù);(2)已知,計(jì)算.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用幾何概型的意義進(jìn)行模擬試驗(yàn),即估算不規(guī)則圖形面積的大?。驹斀狻空叫沃须S機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率,,又,.故選:B.【點(diǎn)睛】本題考查幾何概型的意義進(jìn)行模擬試驗(yàn),計(jì)算不規(guī)則圖形的面積,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意豆子落在陰影區(qū)域內(nèi)的概率與陰影部分面積及正方形面積之間的關(guān)系.2、A【解析】

將向量的坐標(biāo)代入中,利用坐標(biāo)相等,即可得答案.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題考查向量相等的坐標(biāo)運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.3、C【解析】

先根據(jù)等比數(shù)列的求和公式求出首項(xiàng),再根據(jù)通項(xiàng)公式求解.【詳解】從第1層到塔頂?shù)?層,每層的燈數(shù)構(gòu)成一個(gè)等比數(shù)列,公比為,前7項(xiàng)的和為381,則,得第一層,則第三層,故選【點(diǎn)睛】本題考查等比數(shù)列的應(yīng)用,關(guān)鍵在于理解題意.4、D【解析】

根據(jù)向量的加法原理對(duì)已知表示式轉(zhuǎn)化為所需向量的運(yùn)算對(duì)照向量的系數(shù)求解.【詳解】根據(jù)向量的加法原理得所以,,解得且故選D.【點(diǎn)睛】本題考查向量的線性運(yùn)算,屬于基礎(chǔ)題.5、D【解析】

利用古典概型的概率公式即可求解.【詳解】同時(shí)擲兩枚骰子共有種情況,其中向上點(diǎn)數(shù)相同的有種情況,其概率為.故選:D【點(diǎn)睛】本題考查了古典概型的概率計(jì)算公式,解題的關(guān)鍵是找出基本事件個(gè)數(shù),屬于基礎(chǔ)題.6、C【解析】

由正弦定理邊角互化思想得,由可得出的三邊長(zhǎng),可判斷出三角形的形狀,由此可得出的值,再利用平面向量數(shù)量積的定義可計(jì)算出的值.【詳解】,,,,,,為等腰直角三角形,.因此,,故選C.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,同時(shí)也考查了平面向量數(shù)量積定義的計(jì)算,在求平面向量數(shù)量積的計(jì)算時(shí),要注意向量的起點(diǎn)要一致,考查運(yùn)算求解能力,屬于中等題.7、A【解析】過點(diǎn)分別作平面和平面垂直于底面,所以幾何體的體積分為三部分中間是直三棱柱,兩邊是兩個(gè)一樣的四棱錐,所以立方丈,故選A.8、D【解析】

由三視圖可知,得到該幾何體是由兩個(gè)圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【詳解】由三視圖可知,該幾何體是由兩個(gè)圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【點(diǎn)睛】本題考查了幾何體的三視圖及表面積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.9、A【解析】

根據(jù)公式,向量在向量上的投影等于,計(jì)算求得結(jié)果.【詳解】向量在向量上的投影等于.故選A.【點(diǎn)睛】本題考查了向量的投影公式,只需記住公式代入即可,屬于基礎(chǔ)題型.10、B【解析】

由等差數(shù)列前項(xiàng)和公式得出,結(jié)合數(shù)列為遞減數(shù)列確定,從而得到最大時(shí),的值為10.【詳解】由題意可得等差數(shù)列的首項(xiàng),公差則數(shù)列為遞減數(shù)列即當(dāng)時(shí),最大故選B?!军c(diǎn)睛】本題對(duì)等差數(shù)列前項(xiàng)和以及通項(xiàng)公式,關(guān)鍵是將轉(zhuǎn)化為,結(jié)合數(shù)列的單調(diào)性確定最大時(shí),的值為10.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案?!驹斀狻吭O(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【點(diǎn)睛】本題考查分層抽樣,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題。12、【解析】

利用無(wú)窮等比數(shù)列的各項(xiàng)和,可求得,從而,利用首項(xiàng)是某個(gè)自然數(shù),可求,進(jìn)而可求出.【詳解】無(wú)窮等比數(shù)列各項(xiàng)和為3,,是個(gè)自然數(shù),則,.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.13、【解析】

利用誘導(dǎo)公式求解即可【詳解】,故答案為:【點(diǎn)睛】本題考查誘導(dǎo)公式,是基礎(chǔ)題14、【解析】

令,解得的范圍即為所求的單調(diào)區(qū)間.【詳解】令,,解得:,的單調(diào)遞增區(qū)間為故答案為:【點(diǎn)睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解問題,關(guān)鍵是能夠采用整體對(duì)應(yīng)的方式,結(jié)合正弦函數(shù)的單調(diào)區(qū)間來(lái)進(jìn)行求解.15、【解析】,所以,解得.16、【解析】

使過A點(diǎn)作圓的切線有兩條,定點(diǎn)在圓外,代入圓方程計(jì)算得到答案.【詳解】已知圓C的方程為,要使過A點(diǎn)作圓的切線有兩條即點(diǎn)A(1,2)在圓C外:恒成立.綜上所述:故答案為:【點(diǎn)睛】本題考查了點(diǎn)和圓的位置關(guān)系,通過切線數(shù)量判斷位置關(guān)系是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ).【解析】試題分析:(1)①通過求出矩形的邊長(zhǎng),求出面積的表達(dá)式;②利用三角函數(shù)的關(guān)系,求出矩形的鄰邊,求出面積的表達(dá)式;(2)利用(1)②的表達(dá)式,化為一個(gè)角的一個(gè)三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值.試題解析:(1)①因?yàn)椋?,所以,.②?dāng)時(shí),,則,又,所以,所以,().(2)由②得,,當(dāng)時(shí),取得最大值為.考點(diǎn):1.三角函數(shù)中的恒等變換;2.兩角和與差的正弦函數(shù).【方法點(diǎn)睛】本題主要考查的是函數(shù)解析式的求法,三角函數(shù)的最值的確定,三角函數(shù)公式的靈活運(yùn)用,計(jì)算能力,屬于中檔題,此題是課本題目的延伸,如果(2)選擇(1)①中的解析式,需要用到導(dǎo)數(shù)求解,麻煩,不是命題者的本意,因此正確的選擇是選擇(1)②中的解析式,化成一個(gè)角的一個(gè)三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值,此類題目選擇正確的解析式是求解容易與否的關(guān)鍵.18、(1)bn=3n﹣2,n∈N*.(2);(3)最大值為1.【解析】

(1)利用,求得數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.(3)由(2)求得的表達(dá)式,記不等式左邊為,利用差比較法判斷出的單調(diào)性,進(jìn)而求得的最小值,由此列不等式求得的取值范圍,進(jìn)而求得整數(shù)的最大值.【詳解】(1)∵數(shù)列{bn}的前n項(xiàng)和,n∈N*.∴①當(dāng)n=1時(shí),b1=T1=1;②當(dāng)n≥2時(shí),bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;設(shè)f(n);則f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值為f(1);∵對(duì)任意正整數(shù)n,不等式恒成立,∴恒成立,即m<12;故整數(shù)m的最大值為1.【點(diǎn)睛】本小題主要考查已知求,考查裂項(xiàng)求和法,考查數(shù)列單調(diào)性的判斷方法,考查不等式恒成立問題的求解,屬于中檔題.19、(1);(2)該校數(shù)學(xué)平均分為.【解析】

(1)計(jì)算后兩個(gè)矩形的面積之和,可得出結(jié)果;(2)將每個(gè)矩形底邊中點(diǎn)值乘以相應(yīng)矩形的面積,再將這些積相加可得出該校數(shù)學(xué)平均分.【詳解】(1)從該校隨機(jī)選取一名學(xué)生,成績(jī)不低于分的評(píng)定為“優(yōu)秀”的頻率為,所以,數(shù)學(xué)成績(jī)?cè)u(píng)定為“優(yōu)秀”的概率為;(2)估計(jì)該校數(shù)學(xué)平均分.【點(diǎn)睛】本題考查頻率分布直方圖頻率和平均數(shù)的計(jì)算,解題時(shí)要熟悉頻率和平均數(shù)的計(jì)算原則,考查計(jì)算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】

(1)求出的單調(diào)遞增區(qū)間,令,得,可知區(qū)間,即可求出正數(shù)的最大值;(2)令,當(dāng)時(shí),,可將問題轉(zhuǎn)化為在的零點(diǎn)問題,分類討論即可求出答案.【詳解】解:(1)由,得,.因?yàn)樵谏蠁握{(diào)遞增,令,得時(shí)單調(diào)遞增,所以解得,可得正數(shù)的最大值為.(2),設(shè),當(dāng)時(shí),.它的圖形如圖所示.又,則,,令,則函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),可知在內(nèi)最多一個(gè)零點(diǎn).①當(dāng)0為的零點(diǎn)時(shí),顯然不成立;②當(dāng)為的零點(diǎn)時(shí),由,得,把代入中,得,解得,,不符合題意.③當(dāng)零點(diǎn)在區(qū)間時(shí),若,得,此時(shí)零點(diǎn)為1,即,由的圖象可知不符合題意;若,即,設(shè)的兩根分別為,,由,且拋物線的對(duì)稱軸為,則兩根

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論