關(guān)鍵礦產(chǎn)展望比較分析 Critical Minerals Outlooks Comparison_第1頁
關(guān)鍵礦產(chǎn)展望比較分析 Critical Minerals Outlooks Comparison_第2頁
關(guān)鍵礦產(chǎn)展望比較分析 Critical Minerals Outlooks Comparison_第3頁
關(guān)鍵礦產(chǎn)展望比較分析 Critical Minerals Outlooks Comparison_第4頁
關(guān)鍵礦產(chǎn)展望比較分析 Critical Minerals Outlooks Comparison_第5頁
已閱讀5頁,還剩57頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

F

CriticalMinerals

OutlooksComparison

AReportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMines

August2023

AreportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMines

August2023

Writtenandproducedby:

JulietAkamboe

EbenezerManful-Sam

FelixAyaburi

MasonHamilton

MorganBazilian

jsakamboe@

manfulsam@

fzayaburi@

mason.hamilton@

mbazilian@

AbouttheInternationalEnergyForum

TheInternationalEnergyForum(IEF)istheworld'slargestinternationalorganizationofenergyministersfrom71countriesandincludesbothproducingandconsumingnations.TheIEFhasabroadmandatetoexamineallenergyissuesincludingoilandgas,cleanandrenewableenergy,sustainability,energytransitionsandnewtechnologies,datatransparency,andenergyaccess.ThroughtheForumanditsassociatedevents,officials,industryexecutives,andotherexpertsengageinadialogueofincreasingimportancetoglobalenergysecurityandsustainability.

AboutThePayneInstitute

ThemissionofthePayneInstituteatColoradoSchoolofMinesistoprovideworld-classscientificinsights,helpingtoinformandshapepublicpolicyonearthresources,energy,andenvironment.TheInstitutewasestablishedwithanendowmentfromJimandArlenePayne,andseekstolinkthestrongscientificandengineeringresearchandexpertiseatMineswithissuesrelatedtopublicpolicyandnationalsecurity.ThePayneInstituteextendstopublicpolicyMines’convictionthatenergyandtheenvironmentmust–andcan–fruitfullycoexist.

TableofContents

Introduction

3

KeyFindings

5

Aluminum

5

Cobalt

7

Copper

9

Graphite

11

Lithium

13

Neodymium

15

Nickel

16

Silver

18

EnergyScenarios

20

ClimateOutcomeDriven

20

SharedEconomicPathways

20

SpeedofTransitionandTechnologicalProgress

20

Technologymixes

20

Othertechnologieswithinfluence

21

ResourceRequirements

21

TopDownvs.BottomUp

23

IntensityandResourceEfficiencyAssumptions

23

Sub-TechnologiesandChemistryShifts

23

Recycling

25

Conclusions

25

References

27

Appendix:BackgroundsofSurveyedReports

28

_____________________________________________________________________________

2

Introduction

Historically,theenergysectorconstitutedonlyaminorpartofcriticalmineralssupplychainsandmarkets.However,withtheaccelerationofenergytransitions,cleanenergytechnologieshaverapidlyemergedasthesegmentwiththefastestgrowthindemand.

Thishascapturedpublicattentionglobally,andcreatedvarioustrade,market,andgeopoliticalissues.Asaresult,numerousanalyticalscenarioshavebeenproducedtobetterunderstandthisrapidlychangingandcomplexlandscape.

Inafuturetrajectoryalignedwithclimategoals,theproportionoftotalmineralsdemandaccountedforbycleanenergytechnologieswillrisesignificantlyovertheforthcomingtwodecades.Electricvehicles(EVs)andbatterystoragetechnologieshavealreadysupersededconsumerelectronicstobecomethelargestconsumersoflithium,andtheyareprojectedtosurpassstainlesssteeltobecometheprimaryendusersofnickelby2040,andbatteryanodesshareofgraphitedemandhasincreased250%since2018.

Asaresult,severalquantitativedemandmodelshavebeendevelopedtohelpunderstandthescaleofgrowth,andwhethermaterialshortageswillbecomeanobstacletothedeploymentofcleanenergytechnologies.

Thisreportisanon-comprehensivemeta-analysisof11publiclyavailablereportswhichincludevariousassumptionsforenergyandtechnologyscenarios,andtheirresultingcriticalmineralrequirements.Thisexerciseismeanttohighlightkeyinsightsforcriticalmineralsdecisionmakers.Thereportsarefromeightagenciesandorganizationsacrossdifferentgeographies,spanningfrom2019to2023.

.InternationalRenewableEnergyAgency(IRENA)

oWorldEnergyTransitionsOutlook,2023

oGeopoliticsoftheEnergyTransition,2023

oCriticalMineralsfortheEnergyTransition,2021

.InternationalEnergyAgency(IEA)

oTheRoleofCriticalMineralsinCleanEnergyTransitions,2022

oCriticalMineralsMarketReview,2023

.WorldBank

oMineralsforClimateAction,2020

.InstituteforSustainableFuture(ISF)

oTheRoleofCriticalMineralsinCleanEnergyTransitions,2019

.McKinsey&Company

oTheFutureofCriticalMineralsintheNet-ZeroTransition,2021

.CatholicUniversityofLuven(KULuven)

oMetalsforCleanEnergy:PathwaystoSolvingEurope’sRawMaterialsChallenge,2022

.EnergyTransitionsCommission(ETC)

oMineralandResourceRequirementsfortheEnergyTransition,2023

.GermanMineralResourcesAgency(DERA)

oRawMaterialsforEmergingTechnologies,2021

_____________________________________________________________________________

3

All11reportsconsideredconcurontheincreasingdemandformineralsandtheircentralroleintheenergytransition.However,acrossthe11reports,28differentmineralsandmetalsarementioned,withsufficientdatatocompareonlyeight:aluminum,cobalt,copper,graphite,lithium,neodymium,nickel,andsilver.

Thesedemandprojectionsareinherentlysubjecttolargevariations.Disparitiesintheirspecificmineraldemandprojectionsreflectthedifferenttypesofenergyscenarioschosen,themixoftechnologiesdeployed,assumptionsonresourceintensity,technologydevelopments,andrecyclingrates.

Whileoutsidethescopeofthisreport,thesupplysidealsopresentsconsiderablechallengestolong-termforecaststhatmeritadditionalstudyanddiscussion.Manyofthereportssurveyedhighlightedtheriskstotheirprojectionsfromsupplysiderisks,butonlyafewincorporatedsupplyforecastsalongsidetheirdemandprojections.Allreportssurveyednotedtheimportanceofresponsiblesourcing,supplychaintransparency,recycling,andimprovedminingandprocessingefficiency.

Understandingthepotentialmineraldemandsassociatedwiththecleanenergytransitioniscrucialforpolicymakers,mineralproducers,renewableenergydevelopers,andcivilsocietyorganizationstounlockinvestment,setachievableclimatepolicies,andgainpublicacceptanceofnewmines.

_____________________________________________________________________________

4

KeyFindings

Aluminum

_____________________________________________________________________________

5

_____________________________________________________________________________

6

Cobalt

_____________________________________________________________________________

7

。

Copper

_____________________________________________________________________________

9

_____________________________________________________________________________

10

Graphite

_____________________________________________________________________________

11

_____________________________________________________________________________

12

Lithium

_____________________________________________________________________________

13

_____________________________________________________________________________

14

Neodymium

Note:ProductiondataofNeodymiuminU.S.GeologicalSurveydataiscategorizedwithother“RareEarthElements”andnotpublishedindividually.

_____________________________________________________________________________

15

Nickel

_____________________________________________________________________________

16

_____________________________________________________________________________

17

Silver

_____________________________________________________________________________

18

_____________________________________________________________________________

19

EnergyScenarios

Thevariousreportshavedifferentenergyandtechnologyscenariostocalculatecriticalmineralrequirementsunderarangeofconditions.

ClimateOutcomeDriven

Multiplescenarioswerecreatedwithaspecificclimate-basedoutcomebyacertaindateasthegoal,andthenmodelstheenergysystemrequiredtoachievethatgoal.

Inthiscollectionofreports,climateoutcomedrivenscenariosrangedfromlimitingglobalaveragetemperatureriseto1.5°Cby2050,alignedwiththeIPCCspecialreport,to1.7°C,orto2°Cincrease.

CommonlyusedscenarioswerederivedfromInternationalEnergyAgencyscenarios,suchastheAnnouncedPoliciesScenario(APS),associatedwitha1.7°Ctemperatureriseby2100,andtheNet-ZeroEnergyScenario(NZE),associatedwitha1.5°Ctemperaturerise.

Additionally,severalreportsusedIEAscenariosdevelopedpriortotheuseofAPSandNZE,suchastheStatedPoliciesScenario(SPS),andtheSustainableDevelopmentScenario(SDS).TheSTEPSscenarioembodiesthepresentpolicylandscape,basedonasector-wiseappraisalofspecificpoliciesinplaceandthoseannouncedbygovernmentsglobally.Incontrast,theSDSscenarioenvisionsapathwaythatfullyrealizesglobalgoalstocombatclimatechangeinaccordancewiththeParisAgreement,ensuresuniversalenergyaccess,andsignificantlycurbsairpollution.Thisscenariopresupposesthefulfilmentofallexistingnet-zeropledges,withconcertedeffortstoachievenear-termemissionsreductions;advancedeconomiesareprojectedtoreachnet-zeroemissionsby2050,Chinaby2060,andallothernationsby2070atthelatest.

SharedEconomicPathways

TheSharedSocioeconomicPathways(SSPs),werecreatedaspartofthe5thAssessmentReportoftheIntergovernmentalPanelonClimateChange(IPCC)forclimatepolicyissues.EachSSPembodiesdifferentassumptionsabouttheglobalenergysystem'sfuture,andconsequentlycanbeusedtocalculatemineraldemandestimates.

SpeedofTransitionandTechnologicalProgress

Otherreportscreatedscenariosthatvariedthespeedandintensityoftheenergytransition,technologicalprogress,andincreasesinbothtechnologyandresourceefficiency.

Technologymixes

Technologiesemphasizedinthesereportsareunanimous,solarphotovoltaics(PV),windturbines,electricvehicles(EVs),batterystoragesystems,andelectricalgridexpansionareallcorecomponentsoftheseprojections.Thesetechnologiesarekeytoloweringgreenhousegasemissionsandsubsequentlydrivethedemandgrowthforcriticalmineralsthroughouttheprojectionperiod.

_____________________________________________________________________________

20

Othertechnologieswithinfluence

Otherclimate-orientedtechnologieslikecarboncaptureuse&sequestration(CCUS),hydrogen,orkeydevelopmentsinotherrenewableenergysourceslikegeothermal,canmakepreviouslylesssustainableoptionsmorefavorableforthefuture,ordrasticallyaltertheneedandcompetitivenessofothers.Whilenotallthereportssurveyeddirectlydelveintoalternativetechnologiesortheirdeployments,theyshouldbeconsideredwhencomparingcriticalmineraldemandprojections.

ResourceRequirements

Whilethetechnologiesacrossthesurveyedreportswerenearlyunanimous,thetranslationofthosetechnologiesintodemandforcriticalmineralsiswherekeymethodologicaldifferencesarise.Forexample,atotaloftwenty-eight(28)mineralsandmetalswerementionedinallthereportssurveyed,echoingthediversityofwhatpolicymakersconsidertobe“critical”minerals.Governmentshaveindependentlydevelopedlistsofwhichmaterialsconstitutesa“criticalmineral”dependingondomesticallyavailableresources,importdependencies,importancetodomesticenergysystems,manufacturingbase,energypolicypriorities,andothercriteria.

_____________________________________________________________________________

21

_____________________________________________________________________________

22

TopDownvs.BottomUp

Therearealsodifferingapproachestoestimatedemandforcriticalmineralsacrossthevarioustechnologies.

The“bottom-up"approachinvolvesestimatingthematerialrequirementsforeachtechnologydeployed,thenmodelingthegrowthofeachtechnologyacrosstheprojectionperiodandscenariostoarriveatanestimateforthequantityofcriticalmineralsrequired.

The“top-down”approachinvolvesestimatingthegrowthrateofvarioustechnologiesacrossascenario,andthenestimatingtherequiredcriticalmineralsbasedonthisgrowth.

IntensityandResourceEfficiencyAssumptions

Withbothbottom-upandtop-downapproaches,assumptionsneedtobemadeontheintensityofmaterialspertechnologydeployed–kilogramsoflithiumperelectricvehicle,forexample.Aswellasassumptionsonifthatmaterialintensitychangesovertime.Theseestimatescanvarywidelyacrossscenariosandprojectionsandareamajorcontributortovarianceacrossthedifferentreportssurveyed.

Conservativeassumptionsarelikelytotakepresentratesofmaterialintensityandholdthemmoreorlessconstantacrossaprojectionperiod.Meaning,thequantityofamaterialrequiredperunitofrenewableenergytechnologyisthesamein2050asitistoday.

Moreprogressiveassumptionsincludegradualorrapidincreasesinresourceefficiencyacrosstheprojectionperiod.Inotherwords,thequantityofmaterialrequiredperunitofrenewableenergytechnologyislessin2050thanitistoday.

Sub-TechnologiesandChemistryShifts

Estimatesofrequiredcriticalmineralscanalsovarybasedonchangeswithinarenewableenergytechnologycategory.Factorssuchascost,energyintensity,andconsumerbehaviorandpreferencescanshapefuturemarketsandsub-technologies.Thesesub-technologiesinturncanfurtherinfluencethespecificmineralsrequiredfortheenergytransition.

Forinstance,acrosssolarenergytherearedifferentsub-technologiesthathavevariouschemistriesandresourcerequirements.Thepotentialpreferenceforcadmiumtelluride(CdTe)solarcellsoverthecurrentlyprevalenttechnology-crystallinesiliconphotovoltaiccells-couldshiftthedemandformineralslikecadmiumandtelluriuminthefuture.

However,themostprevalentexampleofsub-technologiesdrivingchemistryshiftsoccursinbatteries.Changesinmineralprices,processingexpenses,policyincentives,technologicaldevelopment,andotherfactorshaveresultedinamultitudeofbatterycathodechemistrymixessuchasnickel,manganese,cobalt(NMC),nickel,cobalt,aluminumoxide(NCA),andlithium,iron,phosphate(LFP)batteries.

Ingeneral,NMCcathodesrequirenearlyeighttimesmorecobaltthanNCAlithiumbatteries,butonlyhalfthenickelamount.LFPbatteries,whichdonotrequirenickel,manganese,orcobalt,requiremorecopperthanNMCbatteriesandphosphorus,akeyingredientinlarge-scalefertilizerproduction.

_____________________________________________________________________________

23

Asaresultofthediversityinbatterycathodechemistry,changesinthepriceforoneormorebatteryrawmaterialscangreatlyinfluencetheprevailingorpredominantbatterytypedeployed.Suchshiftshavealreadyoccurredoverthecourseofthepast5-10yearsandarelikelytooccuragaininthefuture.Withinthepast5-years,highcobaltpricesandsupplychainissuesresultedinmanybatterymanufacturersshiftingtolow-cobaltbatterychemistries.Thenhighnickelpricesreducedthepricecompetitivenessofhigh-nickelcontentbatterychemistriesversusLFPbatteries.Thenin2022,asurgeinlithiumpricesledtoanincreaseinLFPbatterycostscomparedwithotherchemistries.WhileLFPbatteriesremainthemostaffordablebatterytechnologyperkilowatt-hour,asustainedincreaseinlithiumpricescouldslowdownthedeploymentofLFPasbatterychemistrypreference.

Thesedifferencesandthechangingadvancementsintechnologymakemineraldemandmodelsdifficulttoestimate.Thisresultsinawiderangeofmineraldemandestimates,evenwhen

_____________________________________________________________________________

24

researchersagreeonthewidescaledeploymentofaspecificlow-carbonorrenewableenergytechnology.

Recycling

Whileallreportssurveyedinthisstudysuggestthatrecyclingcanbeausefultoolinmanagingcriticalmaterialssupply,itisalsoamajorsourceofvarianceacrosscriticalmineralrequirementestimates.

Recyclingratesvarygreatlyacrossdifferentmineralsbecauseofcosts,complexities,compromisedqualityoffinalproduct,ormaterialavailability.Aluminumandcopperaretwoofthemostwidelyrecycledmaterialsaswellastwomaterialsthatoverlapacrossnumerouslow-carbonandrenewableenergytechnologies.Meanwhile,recyclingtechnologyforcertaincriticalmaterialsisstillbeingdevelopedandnotyetatscale.Additionally,dataisoftenlackingforrecyclingratesbeiteitherbymaterial,feedstocksource(batteries,solarpanels,scrap,etc.),orregion.

However,theassumptionsmadeonrecyclingratesintheseprojectionsgreatlyinfluencetheimplicationsfornewminerequirements,supplychaindiversity,sustainability,andpolicy.Conservativeassumptionsofstagnantrecyclingratesintothefutureformanymineralswouldlikelytranslateintoprojectionsshowingafargreaterneedfornewmines,mininginvestment,andsupplychainexpansion.Progressiveassumptionsofincreasingrecyclingratesornearfully-cycleclosedloopsupplychainswouldlikelyresultinprojectionswithfewerlong-termnewminesrequirements.Cobaltandlithiumaretwocriticalmaterialsthathavethehighestnear-termriskofdemandoutpacingsupplyaccordingtomanyofthereportssurveyedinthisstudy.Asignificantfuturesourceofbothcouldbefromincreasedrecyclingratesofend-of-lifeelectricvehiclebatteries.However,recyclinginfrastructureforEVbatteriesisstillinitsinfancy,andtherearestilltechnologicalchallengestoovercome.Forexample,lithiumistechnicallyrecyclablebutischallengingtoisolatefromothercathodematerialswithouttheuseofcostlyorganicreagents.

Acrosstheprojectionssurveyed,themedium-term,~2035-2045,isthekeymakeorbreakpointforEVrecyclingratesandthuslithium,cobalt,andseveralothermineralsupplyrequirements.ThisreflectsboththetimeneededforrecyclinginfrastructureandtechnologytomatureaswellasthetimeneededforEV’sshareofglobalvehiclefleetstogeneratesufficientfeedstock(end-of-lifebatteries)forascaled-uprecyclingindustry.

Conclusions

Theimpendingtransitiontolow-carbonenergytechnologieshasalreadyaffectedcriticalmineralsupplychains,prices,anddemand.Still,itwillcontinuetobeverydifficulttoaccuratelyforecast.Whileprojectionsunanimouslyenvisionintensedeploymentofbatteryelectricvehicles,wind,solar,andothermineral-intenseenergytechnologiestoachieveclimategoals.Continuousvariationsinenergymarkets,technologicaladvancements,costs,emissions,andconsumerpreferencesresultinanever-changingmineraldemandlandscape.

Althoughoutsidethescopeofthisreport,therearesignificantrisksonthesupplysidetotheseprojections.Whilemostmodelsdonotanticipatescarcityanddepletionofmineralresources,factorssuchasgeopolitics,decades-longdevelopmenttimelinesfornewmines,highcapital

_____________________________________________________________________________

25

requirements,increasingESGpressures,anddecliningorequalityindicateahighriskforperiodsofdemandexceedingsupply.

Whileprojectionsoffuturecriticalmineralsdemandrequirementsarenecessarytounderstandthescaleofthechallengeamineral-drivenenergytransitionpresents,itisequallynecessarytounderstandthevastamountofuncertaintythatisinherentinsuchprojections.Thereportssurveyedforthisreportshouldbeconsideredthefirstgenerationoftheirkind.Improveddatacollectionandincreasedcollaborationbetweentheenergymodelingcommunityandthemetalsandminingcommunitywillyieldbetter,standardized,andmorecomprehensiveoutlooksinthefuture.

_____________________________________________________________________________

26

References

.Bain,J.(2021).GridParity:TheArtofFinancingRenewableEnergyProjectsintheU.S.Springer.

.Bingoto,P.,Foucart,M.,Gusakova,M.,Hundertmark,T.,&VanHoey,M.(2021).Thefutureofcriticalmineralsinthenet-zerotransition.McKinsey&Company.

.Dominish,E.,Florin,N.,&Teske,S.(2019).ResponsibleMineralsSourcingforRenewableEnergy.ReportpreparedforEarthworksbytheInstituteforSustainableFutures,UniversityofTechnologySydney.

.EnergyTransitionsCommission.(2023).MaterialandResourceRequirementsfortheEnergyTransition.

.GermanMineralResourcesAgency(DERA).(2021).Rawmaterialsforemergingtechnologies2021.CommissionedbytheFederalInstituteforGeosciencesandNaturalResources(BGR),Berlin.

.Gielen,D.(2021).Criticalmineralsfortheenergytransition.InternationalRenewableEnergyAgency,AbuDhabi.

.InternationalEnergyAgency(2021).TheRoleofCriticalMineralsinCleanEnergyTransitions.InternationalEnergyAgency.

.InternationalEnergyAgency(2023).CriticalMineralsMarketReview2023.International

EnergyAgency.

.InternationalRenewableEnergyAgency(2023).Geopoliticsoftheenergytransition:Criticalmaterials.InternationalRenewableEnergyAgency,AbuDhabi.

.InternationalRenewableEnergyAgency(2023).WorldEnergyTransitionsOutlook2023:

1.5°CPathway,Volume1.InternationalRenewableEnergyAgency,AbuDhabi.

.KULeuven.(2022).MetalsforCleanEnergy.MetalsCleanEnergy.

.WorldBank(2020).MineralsforClimateAction:TheMineralIntensityoftheCleanEnergyTransition.WorldBank.

.UnitedStatesGeologicSurvey,USGS(2023).MineralCommoditySummaries,variousmetals.

_____________________________________________________________________________

27

Appendix:BackgroundsofSurveyedReports

.IRENA(2021;2023),broadlydiscusshowinnovationwillaffectdemandforcriticalmaterialsandtheneedforacomprehensivepolicyframeworkthatnotonlytransformsenergysystemsbutalsoprotectspeople,livelihoods,andjobs.IRENA(2023),uniquelyhighlightsthegeopoliticalaspectsofcriticalminerals,includingtheconcentrationofproductioninafewcountriesandthepotentialforsupplydisruptionsduetotradetensionsorotherfactors.AllthreereportsfromIRENAdepictstrategiestomitigatecriticalmaterialsdependencies,includingrecycling,substitution,anddiversificationofsupplysources.

.IEAreports(2022;2023)highlighttheimportanceofcriticalmineralsforthetransitiontoalow-carbonenergysystemandidentifypotentialrisksandchallengesassociatedwiththeirsupplyanddemand.IEAprovidessomeofthemoredetailedanalysisanddeepdivesintothekeymineraldemandandsupplyprojections.Also,thesereportsprovideacomprehensiveoverviewofthecurrentstateofcriticalmineralsinvestmentsandmarkettrends,andtheyresponddirectlytotherequestsintheG7Five-PointPlanforcriticalmineralssecurity.

.WorldBank(2020)MineralsforClimatereportexaminesthepotentialfordifferentcountriesandregionstodeveloptheirowncriticalmineralresourcesandsupplychains,andthepotentialimplicationsforglobaltradeandgeopolitics.Thepaperisuniqueinitscomprehensiveanalysisofthemineralintensityofthecleanenergytransition,itsdetailedexaminationofthepotentialenvironmentalandsocialimpactsofcriticalmineralproductionanddisposal,anditsglobalperspectiveontheimplicationsofthecleanenergytransitionformineralmarkets,trade,andgeopolitics.

.UniversityofTechnologySydney:InstituteforSustainableFutures,ISF(2019),offersforecastsregardingthefutureneedformetals,whicharedesignedbasedonanaggressiverenewableenergysituation.Thestudyevaluatesthesupplyuncertaintiesconnectedwiththecentralizedproductionandreserves,thepercentageofrenewableenergyinend-use,andthecriticalnatureofthesupplychain.Moreover,thereportcriticallyexaminestheidentifiedimpactsofminingontheenvironment,health,andhumanrights.

.McKinsey&Company(2021)emphasizestheimportanceofsustainabilityinthetransitiontoanet-zeroemissionseconomyandhowtheindustryshouldcomplywithorexceedtheenvironmental,social,andgovernancestandards.Thepaperprovidesrecommendationsforpolicymakersandindustryleaderstoensureasecureandsustainablesupplyofcriticalminerals.Theauthorsproposestrategiesforincreasingthe

productionofcriticalminerals,improvingtherecyclingandreuseofthesematerials,and reducingtheenvironmentalandsocialimpactsofminingandprocessingthesematerials..GermanMi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論