遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點(diǎn)為,極值點(diǎn)為,則()A. B.0C.1 D.22.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.3.已知橢圓的兩焦點(diǎn)分別為,,P為橢圓上一點(diǎn),且,則的面積等于()A.6 B.C. D.4.函數(shù)在點(diǎn)處的切線方程的斜率是()A. B.C. D.5.已知數(shù)列中,,,是的前n項(xiàng)和,則()A. B.C. D.6.甲,乙、丙、丁、戊共5人隨機(jī)地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.7.甲、乙兩名射擊運(yùn)動員進(jìn)行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.988.已知拋物線的焦點(diǎn)坐標(biāo)是,則拋物線的標(biāo)準(zhǔn)方程為A. B.C. D.9.函數(shù)在區(qū)間上的最小值是()A. B.C. D.10.拋物線上有兩個點(diǎn),焦點(diǎn),已知,則線段的中點(diǎn)到軸的距離是()A.1 B.C.2 D.11.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離12.【2018江西撫州市高三八校聯(lián)考】已知雙曲線(,)與拋物線有相同的焦點(diǎn),且雙曲線的一條漸近線與拋物線的準(zhǔn)線交于點(diǎn),則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.動直線,恒過的定點(diǎn)是________14.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個數(shù)的數(shù)學(xué)期望的值是______.15.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___16.執(zhí)行如圖所示的程序框圖,則輸出的S=__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓長軸長為4,A,B分別為左、右頂點(diǎn),P為橢圓上不同于A,B的動點(diǎn),且點(diǎn)在橢圓上,其中e為橢圓的離心率(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線AP與直線(m為常數(shù))交于點(diǎn)Q,①當(dāng)時,設(shè)直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點(diǎn)?如果是,請求出定點(diǎn)坐標(biāo);如果不是,請說明理由18.(12分)已知數(shù)列滿足,,.(1)證明:數(shù)列是等比數(shù)列,并求其通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.19.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,底面ABCD,E為BP的中點(diǎn),,(1)證明:平面PAD;(2)求平面EAC與平面PAC夾角的余弦值20.(12分)如圖,五邊形為東京奧運(yùn)會公路自行車比賽賽道平面設(shè)計圖,根據(jù)比賽需要,在賽道設(shè)計時需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(2)在上述條件下,如何設(shè)計才能使折線賽道(即)的長度最大,并求最大值21.(12分)在中,內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,已知.(1)求B;(2)若,,求b的值.22.(10分)如圖,點(diǎn)分別在射線,上運(yùn)動,且(1)求;(2)求線段的中點(diǎn)M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點(diǎn),求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】令可求得其零點(diǎn),即的值,再利用導(dǎo)數(shù)可求得其極值點(diǎn),即的值,從而可得答案【詳解】解:,當(dāng)時,,即,解得;當(dāng)時,恒成立,的零點(diǎn)為又當(dāng)時,為增函數(shù),故在,上無極值點(diǎn);當(dāng)時,,,當(dāng)時,,當(dāng)時,,時,取到極小值,即的極值點(diǎn),故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點(diǎn),考查分段函數(shù)的應(yīng)用,突出分析運(yùn)算能力的考查,屬于中檔題2、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.3、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點(diǎn),∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B4、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D5、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項(xiàng)和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項(xiàng)相消求和法.6、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機(jī)地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進(jìn)行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A7、A【解析】依據(jù)獨(dú)立事件同時發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A8、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)得到2p=4,進(jìn)而得到方程.【詳解】拋物線的焦點(diǎn)坐標(biāo)是,即p=2,2p=4,故得到方程為.故答案為D.【點(diǎn)睛】這個題目考查了拋物線的標(biāo)準(zhǔn)方程的求法,題目較為簡單.9、B【解析】求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,得極值,并求出端點(diǎn)處函數(shù)值比較后可得最小值【詳解】解:因?yàn)?,于是函?shù)在上單調(diào)遞增,在上單調(diào)遞減,,,得函數(shù)在區(qū)間上的最小值是故選:B10、B【解析】利用拋物線的定義,將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,即可求出線段中點(diǎn)的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點(diǎn)的橫坐標(biāo)為,故線段的中點(diǎn)到軸的距離是.故選:.11、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因?yàn)?所以,圓的圓心的坐標(biāo)為,半徑,將圓化為標(biāo)準(zhǔn)方程為,其圓心的坐標(biāo)為,半徑,圓心距,兩圓內(nèi)切,故選:B12、C【解析】由題意可知,拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,由在拋物線的準(zhǔn)線上,則,則,則焦點(diǎn)坐標(biāo)為,所以,則,解得,雙曲線的漸近線方程是,將代入漸近線的方程,即,則雙曲線的離心率為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將直線方程轉(zhuǎn)化為,從而可得,即可得到結(jié)果.【詳解】∵,∴∴,解得:x=2,y=2.即方程(a∈R)所表示的直線恒過定點(diǎn)(2,2)故答案為:14、【解析】設(shè)抽到的次品的個數(shù)為,則,求出對應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個數(shù)為,則,所以所以抽到次品個數(shù)的數(shù)學(xué)期望的值是故答案為:15、【解析】由在區(qū)間上恒成立來求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:16、【解析】該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運(yùn)行過程,即可求解得答案【詳解】解:S=S+=S+,第一次循環(huán),S=1+1﹣,k=2;第二次循環(huán),S=1+1﹣,k=3;第三次循環(huán),S=1+1,k=4;第四次循環(huán),S=1,k=5;第五次循環(huán),S=1+1,k=6,循環(huán)停止,輸出;故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②直線過定點(diǎn);【解析】(1)依題意得到方程組,解得,即可求出橢圓方程;(2)①由(1)可得,,設(shè),,表示出直線的方程,即可求出點(diǎn)坐標(biāo),從而得到、,即可求出;②在直線方程中令,即可得到的坐標(biāo),再求出直線的斜率,即可得到直線的方程,從而求出定點(diǎn)坐標(biāo);【小問1詳解】解:依題意可得,即,解得或(舍去),所以,所以橢圓方程為【小問2詳解】解:①由(1)可得,,設(shè),,則直線的方程為,令則,所以,,所以,又點(diǎn)在橢圓上,所以,即,所以,即為定值;②因?yàn)橹本€的方程為,令則,因?yàn)?,所以,所以直線的方程為,即又,所以,令,解得,所以直線過定點(diǎn);18、(1)證明見解析,;(2).【解析】(1)由已知條件,可得為常數(shù),從而得證數(shù)列是等比數(shù)列,進(jìn)而可得數(shù)列的通項(xiàng)公式;(2)由(1)可得,又,所以,所以,利用錯位相減法即可求解數(shù)列的前項(xiàng)和.【小問1詳解】證明:由題意,因?yàn)?,,,所以,,所以?shù)列是以2為首項(xiàng),3為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.19、(1)證明見解析(2)【解析】(1)通過作輔助線,構(gòu)造平行四邊形,在平面PAD找到線并證明,根據(jù)線面平行的判定定理即可證明;(2)建立空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),進(jìn)而求得相關(guān)的向量坐標(biāo),求出平面EAC與平面PAC的法向量,根據(jù)向量的夾角公式求得答案.【小問1詳解】證明:取PA的中點(diǎn)F,由E為PB的中點(diǎn),則,,而,,所以且,則四邊形CDFE為平行四邊形,所以,又平面PAD,平面PAD,所以平面PAD【小問2詳解】∵平面ABCD,,∴AP,AB,AD兩兩垂直,以A為原點(diǎn),,,向量方向分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系,各點(diǎn)坐標(biāo)如下:,,,,,設(shè)平面APC的法向量為,由,,有,取,則,,即,設(shè)平面EAC的法向量為,由,,有,取,則,,即,所以,由原圖可知平面EAC與平面PAC夾角為銳角,所以平面EAC與平面PAC夾角的余弦值為20、(1)服務(wù)通道的長為千米(2)時,折線賽道的長度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時取等號)即當(dāng)時,折線賽道的長度最大,最大值為千米21、(1);(2).【解析】(1)利用正弦定理,將邊化角轉(zhuǎn)化,即可求得;(2)利用余弦定理,結(jié)合(1)中所求,即可求得.【小問1詳解】在中,由正弦定理得,因?yàn)椋?,所以,又因?yàn)?,所?【小問2詳解】在中,由余弦定理得,代入數(shù)據(jù)解得,所以22、(1)2(2)(3)證明見詳解【解析】(1)用兩點(diǎn)間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論