四川省成都市雙流區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
四川省成都市雙流區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
四川省成都市雙流區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
四川省成都市雙流區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
四川省成都市雙流區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省成都市雙流區(qū)2023年高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在數(shù)列中,若,則稱為“等方差數(shù)列”,下列對“等方差數(shù)列”的判斷,其中不正確的為()A.若是等方差數(shù)列,則是等差數(shù)列 B.若是等方差數(shù)列,則是等方差數(shù)列C.是等方差數(shù)列 D.若是等方差數(shù)列,則是等方差數(shù)列2.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線上一點(diǎn),,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.84.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線5.定義域?yàn)榈暮瘮?shù)滿足,且的導(dǎo)函數(shù),則滿足的的集合為A. B.C. D.6.如圖,在四面體中,,,,,為線段的中點(diǎn),則等于()A B.C. D.7.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.148.如圖,在棱長為1的正方體中,M是的中點(diǎn),則點(diǎn)到平面MBD的距離是()A. B.C. D.9.在等比數(shù)列中,,,則等于()A.90 B.30C.70 D.4010.設(shè)分別是橢圓的左、右焦點(diǎn),P是C上的點(diǎn),則的周長為()A.13 B.16C.20 D.11.已知命題P:,,則命題P的否定為()A., B.,C., D.,12.如圖,在直三棱柱中,,,D為AB的中點(diǎn),點(diǎn)E在線段上,點(diǎn)F在線段上,則線段EF長的最小值為()A B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是個(gè)幾何體的展開圖,圖①是由個(gè)邊長為的正三角形組成;圖②是由四個(gè)邊長為的正三角形和一個(gè)邊長為的正方形組成;圖③是由個(gè)邊長為的正三角形組成;圖④是由個(gè)邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結(jié)論的序號).14.已知為數(shù)列{}前n項(xiàng)和,若,且),則=___15.已知一組數(shù)據(jù)的平均數(shù)為4,方差為3,若另一組數(shù)據(jù)的平均數(shù)為10,則該組數(shù)據(jù)的方差為_______.16.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對任意實(shí)數(shù)都有,則不等式的解集為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點(diǎn),求直線AD與EM所成角的取值范圍18.(12分)如圖所示,在直三棱柱中,,,(1)求三棱柱的表面積;(2)求異面直線與所成角的大?。ńY(jié)果用反三角函數(shù)表示)19.(12分)設(shè)函數(shù)(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若,為整數(shù),且當(dāng)時(shí),恒成立,求的最大值.(其中為的導(dǎo)函數(shù).)20.(12分)求適合條件的橢圓的標(biāo)準(zhǔn)方程.(1)長軸長是短軸長的2倍,且過點(diǎn);(2)在x軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且焦距為6.21.(12分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù),若兩數(shù)之和為奇數(shù),則甲先停靠;若兩數(shù)之和為偶數(shù),則乙先??浚@種方式對雙方是否公平?請說明理由;(2)若甲、乙兩船在一晝夜內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1h,乙船停泊時(shí)間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.22.(10分)在中,內(nèi)角A、B、C的對邊分別為a、b、c,滿足(1)求A的大?。唬?)若,的面積為,求的周長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)等方差數(shù)列的定義逐一進(jìn)行判斷即可【詳解】選項(xiàng)A中,符合等差數(shù)列的定義,所以是等差數(shù)列,A正確;選項(xiàng)B中,不是常數(shù),所以不是等方差數(shù)列,選項(xiàng)B錯(cuò)誤;選項(xiàng)C中,,所以是等方差數(shù)列,C正確;選項(xiàng)D中,所以是等方差數(shù)列,D正確故選:B2、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因?yàn)榉匠虨殡p曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.3、D【解析】由題可得方程,進(jìn)而可得點(diǎn)坐標(biāo)及點(diǎn)坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點(diǎn)F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點(diǎn)縱坐標(biāo)為,代入拋物線方程,得P點(diǎn)坐標(biāo)為,∴.故選:D.4、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點(diǎn)睛:在直角坐標(biāo)系中,如果某曲線C(看作點(diǎn)的集合或適合某種條件的點(diǎn)的軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)那么,這個(gè)方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時(shí)要注意變量范圍.5、B【解析】利用2f(x)<x+1構(gòu)造函數(shù)g(x)=2f(x)-x-1,進(jìn)而可得g′(x)=2f′(x)-1>0.得出g(x)的單調(diào)性結(jié)合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因?yàn)閒′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調(diào)增函數(shù)因?yàn)閒(1)=1,所以g(1)=2f(1)-1-1=0.所以當(dāng)x<1時(shí),g(x)<0,即2f(x)<x+1.故選B.【點(diǎn)睛】本題主要考察導(dǎo)數(shù)的運(yùn)算以及構(gòu)造函數(shù)利用其單調(diào)性解不等式.屬于中檔題6、D【解析】根據(jù)空間向量的線性運(yùn)算求解【詳解】由已知,故選:D7、B【解析】利用等比數(shù)列的基本量進(jìn)行計(jì)算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B8、A【解析】等體積法求解點(diǎn)到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點(diǎn)E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點(diǎn)到平面MBD的距離是.故選:A9、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式即可求出答案.【詳解】設(shè)該等比數(shù)列的公比為q,則,則.故選:D10、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長為.故選:B11、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B12、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點(diǎn)E,F(xiàn)坐標(biāo),再由兩點(diǎn)間距離公式計(jì)算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時(shí)取“=”,所以線段EF長的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進(jìn)而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設(shè),幾何體為棱長為的正四面體,該正四面體可放入一個(gè)正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設(shè),幾何體為棱長為的正四棱錐,如下圖所示:設(shè),連接,則為、的中點(diǎn),因?yàn)樗倪呅问沁呴L為的正方形,則,所以,,所以,,所以,,,所以點(diǎn)為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設(shè),幾何體為棱長為的正八面體,該正八面體可由兩個(gè)共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設(shè),幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.14、2【解析】第一步找出數(shù)列周期,第二步利用周期性求和.【詳解】,,,,,,可知數(shù)列{}是周期為4的周期數(shù)列,所以故答案為:2.15、12【解析】根據(jù)題意,先通過原始數(shù)據(jù)的平均數(shù)、方差及新數(shù)據(jù)的平均數(shù)求出k,進(jìn)而求出新數(shù)據(jù)的方差.【詳解】由題意,原式數(shù)據(jù)的平均數(shù)和方程分別為:,則新數(shù)據(jù)的平均數(shù),于是新數(shù)據(jù)的方差.故答案為:12.16、【解析】令則,∴在R上是減函數(shù)又等價(jià)于∴故不等式的解集是答案:點(diǎn)睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時(shí)要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進(jìn)而求出三棱錐的體積;(2)利用空間基底表達(dá)出,結(jié)合第一問結(jié)論求出,從而求出答案.【小問1詳解】取AC的中點(diǎn)F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因?yàn)?,所以平面DEF,因?yàn)镈H平面DEF,所以AC⊥DH,因?yàn)?,所以DH⊥平面ABC,因?yàn)?,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因?yàn)?,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設(shè),則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點(diǎn),所以,所以,因?yàn)槿忮F中,所以,所以,故直線AD與EM所成角范圍為.【點(diǎn)睛】針對于立體幾何中角度范圍的題目,可以建立空間直角坐標(biāo)系來進(jìn)行求解,若不容易建立坐標(biāo)系時(shí),也可以通過基底表達(dá)出各個(gè)向量,進(jìn)而求出答案.18、(1);(2)【解析】(1)利用S=2S△ABC+S側(cè),可得三棱柱ABC﹣A1B1C1的表面積S;(2)連接BC1,確定∠BA1C1就是異面直線A1B與AC所成的角(或其補(bǔ)角),在△A1BC1中,利用余弦定理可求結(jié)論【詳解】(1)在△ABC中,因?yàn)锳B=2,AC=4,∠ABC=90°,所以BC=.S△ABC=AB×BC=2所以S=2S△ABC+S側(cè)=4+(2+2+4)×4=24+12(2)連接BC1,因?yàn)锳C∥A1C1,所以∠BA1C1就是異面直線A1B與AC所成的角(或其補(bǔ)角)在△A1BC1中,A1B=2,BC1=2,A1C1=4,由余弦定理可得cos∠BA1C1=,所以∠BA1C1=arccos,即異面直線A1B與AC所成角的大小為arccos【點(diǎn)睛】本題考查三棱柱的表面積,考查線線角,解題的關(guān)鍵是正確作出線線角,屬于中檔題19、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域?yàn)椋?,分和兩種情況解不等式和即可得單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導(dǎo)數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域?yàn)椋?dāng)時(shí),對于恒成立,此時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí),由可得;由可得;此時(shí)在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,當(dāng)時(shí),單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(Ⅱ)若,由可得,因?yàn)椋?,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調(diào)遞增,因?yàn)?,,所以在上存在唯一零點(diǎn),即,可得:,當(dāng)時(shí),,則,當(dāng)時(shí),,則,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因?yàn)?,所以的最大值?【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的方法:(1)確定函數(shù)的定義域;求導(dǎo)函數(shù),由(或)解出相應(yīng)的的范圍,對應(yīng)的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導(dǎo)函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個(gè)子區(qū)間,在這些子區(qū)間上討論的正負(fù),由符號確定在子區(qū)間上的單調(diào)性.20、(1)或(2)【解析】(1)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可;(2)待定系數(shù)法去求橢圓的標(biāo)準(zhǔn)方程即可.【小問1詳解】當(dāng)橢圓焦點(diǎn)在x軸上時(shí),方程可設(shè)為,將點(diǎn)代入得,解之得,則所求橢圓方程為當(dāng)橢圓焦點(diǎn)在y軸上時(shí),方程可設(shè)為,將點(diǎn)代入得,解之得,則所求橢圓方程為【小問2詳解】橢圓方程可設(shè)為,則,解之得,則橢圓方程為21、(1)不公平,理由見解析.(2)【解析】(1)通過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論