湖北省高中名校聯(lián)盟2023-2024學(xué)年高三下學(xué)期3月一模測評試題數(shù)學(xué)_第1頁
湖北省高中名校聯(lián)盟2023-2024學(xué)年高三下學(xué)期3月一模測評試題數(shù)學(xué)_第2頁
湖北省高中名校聯(lián)盟2023-2024學(xué)年高三下學(xué)期3月一模測評試題數(shù)學(xué)_第3頁
湖北省高中名校聯(lián)盟2023-2024學(xué)年高三下學(xué)期3月一模測評試題數(shù)學(xué)_第4頁
湖北省高中名校聯(lián)盟2023-2024學(xué)年高三下學(xué)期3月一模測評試題數(shù)學(xué)_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆高三三月聯(lián)合測評數(shù)學(xué)試卷本試卷共4頁,19題.滿分150分.考試用時120分鐘.考試時間:2024年3月27日下午15:00—17:00注意事項:1.答題前,先將自已的姓名、準(zhǔn)考證號填寫在試卷和答題卡上,并將準(zhǔn)考證號條形碼貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑.寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.3.非選擇題的作答:用黑色簽字筆直接答在答題卡上對應(yīng)的答題區(qū)域內(nèi).寫在試卷、草稿紙和答題卡上的非答題區(qū)域均無效.4.考試結(jié)束后,請將本試卷和答題卡一并上交..一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.設(shè)復(fù)數(shù),則()A.0 B.2 C. D.2.已知集合,,若定義集合運算:,則集合的所有元素之和為()A.6 B.3 C.2 D.03.畫條直線,將圓的內(nèi)部區(qū)域最多分割成()A.部分 B.部分C.部分 D.部分4.某運動愛好者最近一周的運動時長數(shù)據(jù)如下表:星期一二三四五六日時長(分鐘)6015030601090120則()A.運動時長的第30百分位數(shù)是30 B.運動時長的平均數(shù)為60C.運動時長的極差為120 D.運動時長的眾數(shù)為605.已知數(shù)列中,,,,則下列說法不正確的是()A. B.C.是等比數(shù)列 D.6.若,則()A.88 B.87 C.86 D.857.已知函數(shù),,若有兩個零點,則()A. B. C. D.8.以表示數(shù)集中的報小值,已知不全為0的實數(shù)x,y,二元函數(shù),則的最大值為()A.0 B. C.1 D.2二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.已知函數(shù)為函數(shù)的一個極值點,則()A. B.C. D.10.已知拋物線,過的焦點的直線與交于A,B兩點,設(shè)的中點為,分別過A,B兩點作拋物線的切線,相交于點,則()A.點必在拋物線的準(zhǔn)線上B.C.面積的最小值為D.過作直線的平行線交軸于點,則11.已知函數(shù),則()A.當(dāng)時,方程無解B.當(dāng)時,存在實數(shù)使得函數(shù)有兩個零點C.若恒成立,則D.若方程有3個不等的實數(shù)解,則三、填空題:本題共3小題,每小題5分,共15分.12.已知數(shù)列中,,,,則的前項和__________.13.已知直線與橢圓交于A,B兩點,與橢圓交于C,D兩點,若,則實數(shù)__________.14.所有頂點都在兩個平行平面內(nèi)的多面體叫作擬柱體.在這兩個平行平面內(nèi)的面叫作擬柱體的底面,其余各面叫作擬柱體的側(cè)面,兩底面之間的垂直距離叫作擬柱體的高.現(xiàn)有一擬柱體,上下底面均為正六邊形,且下底面邊長為4,上底面各頂點在下底面的射影點為下底面各邊的中點,高為2,則該擬柱體的體積為__________.四、解答題:本題共5小題,共77分.解笞應(yīng)寫出文字說明、證明過程或演算步驟.15.(13分)在中,角A,B,C的對邊分別為a,b,c,,且.(1)判斷的形狀;(2)若在邊上,且,,以和為邊,,向外作兩個正方形,求這兩個正方形面積和的最小值.16.(15分)如圖,已知三棱錐中,平面底面,平面,且,.(1)求三棱錐的體積;(2)已知,求平面與平面所成二面角的正弦值.17.(15分)已知函數(shù).(1)證明:函數(shù)有三個不同零點的必要條件是;(2)由代數(shù)基本定理,次復(fù)系數(shù)多項式方程在復(fù)數(shù)域內(nèi)有且只有個根(重根按重數(shù)計算).若,證明:方程至多有3個實數(shù)根.18.(17分)在平面直角坐標(biāo)系內(nèi),以原點為圓心,a,b(,,a,b為定值)為半徑分別作同心圓,,設(shè)為圓上任一點(不在軸上),作直線,過點作圓的切線與軸交于點,過圓與軸的交點作圓的切線與直線交于點,過點,分別作軸,軸的垂線交于點.(1)求動點的軌跡的方程;(2)設(shè),點,,過點的直線與軌跡交于A,B兩點(兩點均在y軸左側(cè)).(i)若,的內(nèi)切圓的圓心的縱坐標(biāo)為,求的值;(ii)若點是曲線上(軸左側(cè))的點,過點作直線與曲線在處的切線平行,交于點,證明:的長為定值.19.(17分)設(shè)的所有可能取值為,稱()為二維離散隨機變量的聯(lián)合分布列,用表格表示為:YX…………1仿照條件概率的定義,有如下離散隨機變量的條件分布列:定義,對于固定的,若,則稱為給定條件下的條件分布列.離散隨機變量的條件分布的數(shù)學(xué)期望(若存在)定義如下:.(1)設(shè)二維離散隨機變量的聯(lián)合分布列為YX123410.10.30.20.620.050.20.150.40.150.50.351求給定條件下的條件分布列;(2)設(shè)為二維離散隨機變量,且存在,證明:;(3)某人被困在有三個門的迷宮里,第一個門通向離開迷宮的道,沿此道走30分鐘可走出迷宮;第二個門通一條迷道,沿此迷道走50分鐘又回到原處;第三個門通一條迷道,沿此迷道走70分鐘也回到原處.假定此人總是等可能地在三個門中選擇一個,試求他平均要用多少時間才能走出迷宮.2024屆高三三月聯(lián)合測評數(shù)學(xué)試卷參考答案與評分細(xì)則1.B【解析】因為,所以,選B.2.A【解析】因為,所以集合的所有元素之和為6,選A.3.B【解析】設(shè)畫條直線,將圓最多分割成部分,有,,所以,選B.4.D【解析】數(shù)據(jù)排序為:10,30,60,60,90,120,150.由,得第30百分位數(shù)為60,A錯;平均數(shù)為,B錯;極差為140,C錯;眾數(shù)為60,D對.選D.5.D【解析】由,,得,所以,,故,,ABC正確,選D.6.A【解析】易知,當(dāng)時,,所以,而,所以,選A.7.C【解析】由,得或,所以或,由,所以,,A、B錯誤.,C正確,,D錯誤,選C.8.C【解析】易知.當(dāng)時,;當(dāng)時,,所以,選C.9.AC【解析】由,,有,,,A正確,B錯誤;是函數(shù)圖象的對稱軸,C正確;是函數(shù)的對稱中心,D錯誤,選AC.10.ABC【解析】設(shè),與拋物線方程聯(lián)立有,設(shè),,有,,,的斜率分別為,,有,,解得,所以A正確;,,經(jīng)計算,,B正確;對C,,易知當(dāng)時取最小值,C正確;對D,由于軸,所以四邊形為平行四邊形,所以,而,D錯誤,選ABC.11.BCD【解析】對A,,,,令,,易知,,,,所以,方程有解,A錯誤;對B,有兩個零點0,所以當(dāng)時,有兩個零點,正確;對C,若恒成立,即恒成立,即恒成立,令,則,令,則,所以在是增函數(shù),又,,因此,,使得①,所以當(dāng)時,,即,則在上是減函數(shù),當(dāng)時,,即,則在上式增函數(shù),則②,由①得,又設(shè),易知在是增函數(shù),所以③,將③代入②得,因此,正確.對D,或,即或兩個方程有3個解,令,,可知在上遞減,在上遞增,且當(dāng)時,從而,從而,正確.選BCD.12.,所以,,所以,所以.填:13.將直線方程分別與兩個橢圓方程聯(lián)立,有,,設(shè),,,,有,,所以線段與的中點重合,故,所以.填:1.14.過上底頂點向下底作垂線,可得該擬柱體的體積為中間正六棱柱的體積與外側(cè)6個四棱雉的體積之和,上底面邊長為,正六棱柱的體積,四棱錐的體積為,從而擬柱體的體積為.填:.15.(1)由及正弦定理可得,.整理有.從而,或.而,所以是直角三角形.(2)由(1)知,,設(shè),,在中,由正弦定理,,.同理在中,.所以兩個正方形面積和.當(dāng)且僅當(dāng),即時等號成立,所以兩個正方形面積和的最小值為.16.(1)取中點為,連結(jié),由,平面,所以..又平面底面,所以平面.所以.所以底面.從而的體積為.(2)由(1)以為原點,過點作平行線為軸,,分別為x,z軸,建立如圖所示的空間直角坐標(biāo)系.有,,,.,,.設(shè)為平面的法向量,,,有.平面的法向量.有.所以平面與平面所成二面角的正弦值為.17.解:(1),其判別式.若函數(shù)有三個不同零點,則必有極大值點與極小值點.故,從而其必要條件為.(3)令....由,可知.所以在定義域上單調(diào)遞增,則其僅有唯一零點,不妨記為,可知在上,在上,故先減后增.所以至多有兩個不同的零點,不妨設(shè)為,,從而在上遞增,,遞減,遞增.從而至多有三個不同零點.所以方程至多有3個實數(shù)根.18.(1)設(shè),則.過的切線方程為,所以由和,得.設(shè),則即由,得為所求的方程.(2)設(shè)內(nèi)切圓圓心為,點G,H,J分別為圓與,,的切點.(i)由(1)可知,軌跡是以為焦點的雙曲線,由雙曲線定義可知,,,.由,有,r為內(nèi)切圓的半徑.從而,有.又,所以切點與重合,設(shè),有,.聯(lián)立有,所以.(ii)設(shè),過點作的角平分線,交軸于點,設(shè),,,由角平分線定理,,有,解得.從而.設(shè)切線為,與雙曲線方程聯(lián)立,解得,所以切線即為,從而.延長至,使得,連結(jié),有,設(shè)過原點的與處切線平行的直線與交于點,由于為中點,所以為中點,又,所以.從而.所以.19.(1)因為,所以用第一行各元素分別除以0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論