湖南省長沙市長郡雙語實(shí)驗(yàn)中學(xué)2023-2024學(xué)年九年級上學(xué)期第一次數(shù)學(xué)月考試卷_第1頁
湖南省長沙市長郡雙語實(shí)驗(yàn)中學(xué)2023-2024學(xué)年九年級上學(xué)期第一次數(shù)學(xué)月考試卷_第2頁
湖南省長沙市長郡雙語實(shí)驗(yàn)中學(xué)2023-2024學(xué)年九年級上學(xué)期第一次數(shù)學(xué)月考試卷_第3頁
湖南省長沙市長郡雙語實(shí)驗(yàn)中學(xué)2023-2024學(xué)年九年級上學(xué)期第一次數(shù)學(xué)月考試卷_第4頁
湖南省長沙市長郡雙語實(shí)驗(yàn)中學(xué)2023-2024學(xué)年九年級上學(xué)期第一次數(shù)學(xué)月考試卷_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長郡雙語初三數(shù)學(xué)月考

姓名__________

一、選擇題(本題共10小題,每小題3分,共30分)

1.下?列圖形中既是軸對稱圖A形又是中心對稱圖形的★是()

2.下列計(jì)算正確的是()

A.(x+y)2=/+,2B.X5,%—x6C.(xy2)3—xy6D.JT+%2—2x4

3.在平面直角坐標(biāo)系中,以原點(diǎn)。為圓心,5為半徑作圓,點(diǎn)P的坐標(biāo)是(4,3),則點(diǎn)

戶與。0的位置關(guān)系是()

A.點(diǎn)P在。O內(nèi)B.點(diǎn)尸在。。外

C.點(diǎn)尸在上D.點(diǎn)尸在。0上或在。。外

4.如右圖,在。0中,AB//OC,若/。84=50°,則NBAC的度數(shù)是(

A.50°B.30°C.25°D.20°

5.關(guān)于拋物線y=/-2x+l,下列說法錯(cuò)誤的是()

A.開口向上B.與x軸有兩個(gè)重合的交點(diǎn)

C.對稱軸是直線x=lD.當(dāng)x>l時(shí),y隨x的增大而減小

6.某種商品每件的進(jìn)價(jià)為30元,在某時(shí)間段內(nèi)若以每件x元出售,可賣出(100-x)件.若

想獲得最大利潤,則定價(jià)x應(yīng)為()

A.35元B.45元C.55元D.65元

7.如右圖,小明以拋物線為靈感,在平面直角坐標(biāo)系中設(shè)計(jì)了一款高。。為14的獎

杯,杯體軸截面ABC是拋物線>=/乂2+5的一部分,則杯口的口徑417為()

A.7B.8C.9D.10

8.如下圖,在平面直角坐標(biāo)系中,點(diǎn)4在y軸上,點(diǎn)B的坐標(biāo)為(6,0),將△ABO

繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△O8C,則點(diǎn)C的坐標(biāo)是()

A.(3加,3)B.(3,3毒)C.(6,3)D.(3,6)

9.己知拋物線y=『+灰+c的部分圖象如下圖所示,若yVO,則x的取值范圍是()

10.已知二次函數(shù)曠=0?+歷什,("W0)的圖象如圖所示.有下列結(jié)論.

①/-4ac>0;②abc>0;③8a+c>0;④9a+3匕+c<0;⑤(a+c)2<b2.

其中,正確結(jié)論的個(gè)數(shù)是()

A.2B.3C.4D.5

二.填空題(本題共6題,每小題3分,共18分)

11.某公司招聘員工一名,某應(yīng)聘者進(jìn)行了三項(xiàng)素質(zhì)測試,其中創(chuàng)新能力為70分,綜合知

識為80分,語言表達(dá)為90分,如果將這三項(xiàng)成績按4:3:3計(jì)入總成績,則他的總成績?yōu)?/p>

分.

12.在二次函數(shù)>=*-2*-3中,當(dāng)0WxW3時(shí),y的最大值是

13.將拋物線y=3(x-2)2+1向左平移2個(gè)單位,再向下平移1個(gè)單位,則所得拋物線的

表達(dá)式為.

14.如圖,8。是/ABC的角平分線,DE1ABTE,△A8C的面積是27cm2,AB=Scm,

BC^iOcm,貝lj£)E=____cm.

:oo

T14cL------------------B

15.如圖,四邊形ABC。內(nèi)接于O。,延長CO交OO于點(diǎn)E,連接3E,若NA=100°,

/E=60°,則/OCZ)的大小為—o

16.在OO中,直徑AB=4,弓玄CDLAB于P,OP=&,則弦CD的長

三.解答題(本大題共9個(gè)小題,第17、18、19每小題6分,第20、21題8分,

第22、23每小題9分,第24、25每小題10分,共72分)

17.計(jì)算:(2024—兀)°+V3X(-V6)+|l-^2|+(1)-2

2

18.先化簡:心拿+1J)+-^-,再取一個(gè)你認(rèn)為合理的x值,代入求原式的值.

x2-lxx+1

19.如圖,在平面直角坐標(biāo)系內(nèi),aABC三個(gè)頂點(diǎn)的坐標(biāo)分別為4(1,-2),8(4,-1),

C(3,-3)(正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1個(gè)單位長度).

(1)以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,將△ABC逆時(shí)針旋轉(zhuǎn)90°,得到△4BC”請畫出△

寫出4點(diǎn)的坐標(biāo);

(2)求4ABC的面積

20.如圖,點(diǎn)。是等邊△ABC內(nèi)一點(diǎn),將線段AZ)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,

連接CD,BE.

(1)求證:EB=DC;

(2)連接。E,若NBE£)=50°,求NAOC.

A

21.如圖,已知拋物線y=W+bx+c經(jīng)過A(-1,0)、8(3,0)兩點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)點(diǎn)P為拋物線上一點(diǎn),若SA/MB=10,求出此時(shí)點(diǎn)尸的坐標(biāo).

22.某電腦經(jīng)銷商計(jì)劃同時(shí)購進(jìn)一批電腦機(jī)箱和液晶顯示器,若購進(jìn)電腦機(jī)箱10臺和液晶

顯示器8臺,共需要資金7000元,若購進(jìn)電腦機(jī)箱兩臺和液晶顯示器5臺,共需要資金

4120元.

(1)每臺電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?

(2)該經(jīng)銷商計(jì)劃購進(jìn)這兩種商品共50臺,而可用于購買這兩種商品的資金不超過

22240元,根據(jù)市場行情,銷售電腦機(jī)箱,液晶顯示器一臺分別可獲得10元和160元的

利潤,該經(jīng)銷商希望銷售完這兩種商品,所獲得利潤不少于4100元,試問:該經(jīng)銷商有

幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤是多少?

23.如圖,AB是。0的直徑,C是俞的中點(diǎn),于點(diǎn)E,BD交CE于點(diǎn)F.

(1)求證:CF=BF;

(2)若C£>=6,AC=8,求O。的半徑及CE的長.

24.綜合與探究:

如圖,已知拋物線丫=1*24*+6與X軸交于A,3兩點(diǎn)(點(diǎn)A在點(diǎn)8的左邊),與y

軸交于點(diǎn)C.直線8c與拋物線的對稱軸交于點(diǎn)E.將直線BC沿射線C。方向向下平移

〃個(gè)單位,平移后的直線與直線AC交于點(diǎn)凡與拋物線的對稱軸交于點(diǎn)/).

(1)求出點(diǎn)A,B,C的坐標(biāo),并直接寫出直線AC,BC的解析式;

(2)當(dāng)△COB是以8c為斜邊的直角三角形時(shí),求出〃的值;

(3)直線2c上是否存在一點(diǎn)尸,使以點(diǎn)E,F,尸為頂點(diǎn)的四邊形是菱形?若存在,

請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

備用圖

25.如圖,拋物線>=加+法+c(a,6c是常數(shù),"W0)的對稱軸為y軸,且經(jīng)過(0,0)

和(?,」一)兩點(diǎn),點(diǎn)尸在該拋物線上運(yùn)動,以點(diǎn)P為圓心的0P總經(jīng)過定點(diǎn)A(0,2).

16

(1)求a,h,c的值;

(2)求證:在點(diǎn)P運(yùn)動的過程中,圓心P帶x軸的距離始終小于半徑;

(3)設(shè)。P與x軸相交于例(xi,0),N(x2,0)(xi<x2)兩點(diǎn),當(dāng)△AMN是以AM

為底邊的等腰三角形時(shí),求圓心尸的縱坐標(biāo).

第一次作業(yè)精選模擬練習(xí)

參考答案與試題解析

選擇題(共11小題)

1.下列圖形中既是軸對稱圖形又是中心對稱圖形的是()

女?。盡

【解答】解:4該圖形不是軸對稱圖形,不是中心對稱圖形,不符合題意;

B.該圖形既不是軸對稱圖形,也不是中心對稱圖形,不符合題意;

C.該圖形是軸對稱圖形,不是中心對稱圖形,不符合題意;

D.該圖形既是軸對稱圖形,又是中心對稱圖形,符合題意.

故選:D.

2.下列計(jì)算正確的是()

A.(x+y)2=f+y2B.x5,x=x6

C.(Ay2)3=肛6D.d+d=2/

【解答】解:A.x+y)2—x2+2xy+y^,故本選項(xiàng)不合題意;

B.X5,X=JC6,故本選項(xiàng)符合題意;

C.(到3=必/6,故本選項(xiàng)不合題意;

D./+*=*,故本選項(xiàng)不合題意.

故選:B.

3.在平面直角坐標(biāo)系中,以原點(diǎn)。為圓心,5為半徑作圓,點(diǎn)P的坐標(biāo)是(4,3),則點(diǎn)

P與。。的位置關(guān)系是()

A.點(diǎn)P在。0內(nèi)B.點(diǎn)P在。。外

C.點(diǎn)尸在上D.點(diǎn)P在。0上或在。0外

【解答】解:..,點(diǎn)P的坐標(biāo)是(4,3),

O/5~V3^+42=5,

而。。的半徑為5,

.?.OP等于圓的半徑,

.?.點(diǎn)P在。。上.

故選:C.

,則NBAC的度數(shù)是()

C.25°D.20°

【解答】解:,:AB//OC,NO8A=50°,

OBA=50°,

:NBAC與NBOC所對的弧都是商,

,NBAC=£NB0C=25。-

故選:C.

5.關(guān)于拋物線y=f-2x+l,下列說法錯(cuò)誤的是()

A.開口向上

B.與x軸有兩個(gè)重合的交點(diǎn)

C.對稱軸是直線x=l

D.當(dāng)x>l時(shí),y隨x的增大而減小

【解答】解:“fF+U(x-1)2

,頂點(diǎn)坐標(biāo)(1,0),對稱軸x=l.

,開口向上,拋物線的頂點(diǎn)在x軸上,

;.A、B、C正確,

故選:D.

6.某種商品每件的進(jìn)價(jià)為30元,在某時(shí)間段內(nèi)若以每件x元出售,可賣出(100-x)件.若

想獲得最大利潤,則定價(jià)x應(yīng)為()

A.35元B.45元C.55元D.65元

【解答】解:設(shè)最大利潤為w元,

則w=(X-30)(100-X)=-(X-65)2+1225,

V-KO,0<x<100,

.?.當(dāng)x=65時(shí),二次函數(shù)有最大值1225,

二定價(jià)是65元時(shí),利潤最大.

故選:D.

7.如圖,小明以拋物線為靈感,在平面直角坐標(biāo)系中設(shè)計(jì)了一款高0。為14的獎杯,杯體

軸截面A8C是拋物線),=9乂2+5的一部分,則杯口的口徑4(7為()

【解答】解:。。為14,14=公+5,解得x=±9,

92

(-X14),C&14),

22

."c=9-(-9)=9,

22

故選:c.

8.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)為(6,0),將△A8。繞著點(diǎn)

3順時(shí)針旋轉(zhuǎn)60°,得到△Q3C,則點(diǎn)C的坐標(biāo)是()

yD

A.(3%,3)B.(3,3V3)C.(6,3)D.(3,6)

【解答】解:作CM_Lx軸于M,

丁點(diǎn)8的坐標(biāo)為(6,0),

:?BC=OB=6,

':ZOBC=60°,

???BM=/BC=3,CM=與

:.OM=OB-BM=6-3=3,

:.C(3,3A/3).

故選:B.

9.己知拋物線y=f+fex+c的部分圖象如圖所示,若y<0,則x的取值范圍是()

A.-l<x<4B.-l<x<3C.x<-l或x>4D.x<-l或x>3

【解答】解:由圖象知,拋物線與x軸交于(-1,0),對稱軸為x=l,

.?.拋物線與x軸的另一交點(diǎn)坐標(biāo)為(3,0),

???yVO時(shí),函數(shù)的圖象位于x軸的下方,

且當(dāng)-l<x<3時(shí)函數(shù)圖象位于x軸的下方,

.?.當(dāng)-l<x<3時(shí),y<0.

故選:B.

10.已知二次函數(shù)>=加+笈+。(a/0)的圖象如圖所示.有下列結(jié)論.

①力2-4ac>0;②。加>0;③8〃+c>0;④9a+36+c<0;⑤(a+c)2<h2.

【解答】解:拋物線與x軸有兩個(gè)不同的交點(diǎn),因此〃-4“c>0,故①正確;

拋物線開口向上,因此a>0,對稱軸為x=l>0,a、b異號,因此%<0,拋物線與y軸

交在負(fù)半軸,因此cVO,所以4A>0,故②正確;

由圖象可知,當(dāng)x=-2時(shí),y—4a-2b+c>0,又對稱軸彳=--"=1,即,b--2a,

2a

所以8n+c>0,故③正確;

當(dāng)x=3時(shí),y—9a+3b+c<0,因此④正確;

當(dāng)x=l時(shí),y=a+b+c<0,當(dāng)x=-1時(shí),y=a-b+c<0,所以(a+6+c)(a-b+c)>0,

即(a+c)2-b2>0,也就是(a+c)2>b2,故⑤錯(cuò)誤,

綜上所述,正確結(jié)論有:①②③④

故選:C.

二.填空題(共5小題)

11.某公司招聘員工一名,某應(yīng)聘者進(jìn)行了三項(xiàng)素質(zhì)測試,其中創(chuàng)新能力為70分,綜合知

識為80分,語言表達(dá)為90分,如果將這三項(xiàng)成績按4:3:3計(jì)入總成績,則他的總成

績?yōu)?9分.

【解答】解:70X—_+80*_?_+90X—?_=79(分),

4+3+34+3+34+3+3

故答案為:79.

12.在二次函數(shù)-2/-3中,當(dāng)0?時(shí),y的最大值是

【解答】解:拋物線的對稱軸是直線1=1,

當(dāng)x=3時(shí),y=9-6-3=0是最大值.

13.將拋物線y=3(x-2)2+1向左平移2個(gè)單位,再向下平移1個(gè)單位,則所得拋物線的

表達(dá)式為y=3*.

【解答】解:..?將拋物線y=3(x-2)2+1向左平移2個(gè)單位,再向下平移1個(gè)單位,

.?.平移后的拋物線的解析式為:y=3(x-2+2)2+1-1,即y=3f.

故答案為y=3*.

14.如圖,8。是NABC的角平分線,DE_LAB于E,/XABC的面積是27c>,AB=8cvm

BC=\Ocrn,則DE=3ent.

【解答】解:作。FLBC于F,

設(shè)OE為x,

;武)是NABC的角平分線,DE1AB,DFLBC,

**?DE=DF=xf

:.XxABXDE+1.XBCXO尸=27,

22

即4x+5x=27,

解得x=3,

故答案為:3.

15.如圖,四邊形ABC£)內(nèi)接于(DO,延長CO交OO于點(diǎn)E,連接BE,若NA=100°,

NE=60°,則/OCZ)的大小為50°.

【解答】解::EC是的直徑,

AZ£BC=90°,

AZBCE=9Q°-ZE=30°,

?.?四邊形ABC。內(nèi)接于OO,

:.ZBCD=\SO°-NA=80°,

:.NOCD=/BCD-NBCE=50°,

故答案為:50.

16.在。。中,直徑AB=4,弦CD_LAB于P,0P=?,則弦CD的長為2G..

【解答】解:連接OC,

?.,在。0中,直徑A8=4,

OC=LB=2,

2

.,.弦C£>_LA8于P,OP=&,

?**CP=Voc2-op2=V22-(V2)2=>

:.CD=2CP=2近.

故答案為:2&.

三.解答題(共10小題)

2

18.先化簡:(2再取一個(gè)你認(rèn)為合理的X值,代入求原式的值.

x2-lxx+1

(X-1)2

【解答】解:原式=[-T1(x+i)

(x+1)(X-1)

=()(x+l)

君x+1口X

—x2-x+x+l/

一T^iT?(x+i)

_x2+l

—1

X

當(dāng)x=2時(shí),

9

原式=2■上L=?.

22

說明:x除不能取0,1,7外,取其它值均可.

19.如圖,在平面直角坐標(biāo)系內(nèi),△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(l,-2),B(4,-1),

C(3,-3)(正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1個(gè)單位長度).

(1)以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,將aABC逆時(shí)針旋轉(zhuǎn)90°,得到△4BC”請畫出△

4BiG,寫出4點(diǎn)的坐標(biāo);

(2)求點(diǎn)C到點(diǎn)G經(jīng)過的路徑.

【解答】解:(1)如圖,△A/Ci即為所求,Ai點(diǎn)的坐標(biāo)為(2,1);

yk

(2);0C=^H=3五,ZCOC,=90°,

...點(diǎn)C到點(diǎn)G經(jīng)過的路徑為:9QKX3V2=W2,K.

1802

20.如圖,點(diǎn)。是等邊aABC內(nèi)一點(diǎn),將線段AQ繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60。,得到線段AE,

連接CD,BE.

(1)求證:EB=DC;

(2)連接。E,若NBED=50°,求/AOC.

【解答】(1)證明:;△ABC是等邊三角形,

:.ZBAC=60°,AB=AC.

:線段AO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,

AZDAE=60°,AE=AD.

:.NBAD+NEAB=ZBAD+ZDAC.

:.NEAB=ADAC.

在△E48和4c中,

,AB=AC

<ZEAB=ZDAC)

AE=AD

:./\EAB^ADAC(SAS),

:.BE=CD;

(2)VZDAE=60°,AE=AD,

???△EAO為等邊三角形.

???NAED=60°,

VZBED=50°,

AZAEB=\\0°,

VAEAB^ADAC

AZAEB=ZADC=\\O°.

21.如圖,已知拋物線y=f+Zzx+c經(jīng)過A(-1,0)、8(3,0)兩點(diǎn).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)點(diǎn)尸為拋物線上一點(diǎn),若S△附8=10,求出此時(shí)點(diǎn)P的坐標(biāo).

【解答】解:⑴把A(-L0)、8(3,0)代入yb+fer+c得1l-b+c=°,解得尸一2

19+3b+c=0Ic=-3

所以拋物線解析式為y=f-2x-3=(x-I)2-4,

頂點(diǎn)的坐標(biāo)為(1,-4);

(2)VA(-1,0)、8(3,0),

:.AB=3-(-1)=4,

設(shè)P點(diǎn)坐標(biāo)為(r,尸-2/-3),

10,

.?.工X4X|p-2r-3|=10,

2

當(dāng)P-2f-3=5,解得八=-2,r2=4,此時(shí)P點(diǎn)坐標(biāo)為(-2,5)或(4,5);

當(dāng)尸-2「3=-5,方程沒有實(shí)數(shù)解,

綜上所述,P點(diǎn)坐標(biāo)為(-2,5)或(4,5);

22.某電腦經(jīng)銷商計(jì)劃同時(shí)購進(jìn)一批電腦機(jī)箱和液晶顯示器,若購進(jìn)電腦機(jī)箱10臺和液晶

顯示器8臺,共需要資金7000元,若購進(jìn)電腦機(jī)箱兩臺和液晶顯示器5臺,共需要資金

4120元.

(1)每臺電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?

(2)該經(jīng)銷商計(jì)劃購進(jìn)這兩種商品共50臺,而可用于購買這兩種商品的資金不超過

22240元,根據(jù)市場行情,銷售電腦機(jī)箱,液晶顯示器一臺分別可獲得10元和160元,

該經(jīng)銷商希望銷售完這兩種商品,所獲得利潤不少于4100元,試問:該經(jīng)銷商有幾種進(jìn)

貨方案?哪種方案獲利最大?最大利潤是多少?

【解答】解:(1)設(shè)每臺電腦機(jī)箱進(jìn)價(jià)為x元、每臺液晶顯示器的進(jìn)價(jià)為y元.

根據(jù)題意得:(l°x+8尸7°°°,

|2x+5y=4120

解得:卜=6°.

ly=800

答:設(shè)每臺電腦機(jī)箱進(jìn)價(jià)為60元、每臺液晶顯示器的進(jìn)價(jià)為800元.

(2)設(shè)購買電腦機(jī)箱“臺,則購買液晶顯示器(50-a)臺.

根據(jù)題意得:(60a+800(50-a)<22240)

110a+160(50-a)>4100

解得:24W“W26.

經(jīng)銷商共有三種進(jìn)貨方案:①購買電腦機(jī)箱24臺,購買液晶顯示器26臺:②購買電腦

機(jī)箱25臺,購買液晶顯示器25臺;③購買電腦機(jī)箱26臺,購買液晶顯示器24臺.

第①種進(jìn)貨方案獲利最大,最大利潤=10X24+160X26=4400兀.

23.如圖,AB是。。的直徑,C是俞的中點(diǎn),CELAB于點(diǎn)E,BD交CE于點(diǎn)F.

(1)求證:CF=BF;

(2)若CD=6,AC=8,求。。的半徑及CE的長.

【解答】(1)證明:???43是。。的直徑,

AZACB=90°,

???N4=900-ZABC.

*:CELAB.

:.ZCEB=90°,

:.ZECB=90°-/ABC,

:.ZECB=ZA.

又???c是標(biāo)的中點(diǎn),

???a=肩,

AZDBC=NA,

:?NECB=/DBC,

:.CF=BF;

(2)解:TBC=CD,

:.BC=CD=6,

VZACB=90<>,

;?A8=VBC2+AC2=V62+82=13

,OO的半徑為5,

":S&ABC^—AB'CE=^BC'AC,

22

.cg=BC>AC=6X8=24

--ABio-V

24.綜合與探究:

如圖,已知拋物線丫=1*2號x+6與x軸交于A,B兩點(diǎn)、(點(diǎn)A在點(diǎn)8的左邊),與y

軸交于點(diǎn)C.直線BC與拋物線的對稱軸交于點(diǎn)E.將直線BC沿射線CO方向向下平移

〃個(gè)單位,平移后的直線與直線4c交于點(diǎn)凡與拋物線的對稱軸交于點(diǎn)。.

(2)當(dāng)△CQB是以BC為斜邊的直角三角形時(shí),求出〃的值;

(3)直線8c上是否存在一點(diǎn)P,使以點(diǎn)。,E,F,P為頂點(diǎn)的四邊形是菱形?若存在,

請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【解答】解:(1)當(dāng)y=0時(shí),(乂2亭+6=0,

解得工=-2或x=8,

(-2,0),8(8,0),

當(dāng)犬=0時(shí),y=6,

:.C(0,6),

設(shè)直線AC的解析式為》=h+6,

,-2好6=0,

解得々=3,

???直線AC的解析式為y=3x+6,

設(shè)直線BC的解析式為y=£x+6,

???以'+6=0,

解得k'=-1,

4

直線BC的解析式為尸--Ir+6;

4

2+>

⑵Vy=^-x2+^.x+g=-(JC-3)-^-

...拋物線的對稱軸為直線x=3,

:.E(3,嗎,

4

平移后的直線解析式為y=-lx+6-n,

4

:.D(3,至-“),

4

.?.CD2=9+(n+-i)2,g》=25+(至-〃)2,BC2=100,

44

?.?△CD?是以BC為斜邊的直角三角形,

.".100=9+(〃+2)2+25+(至-〃)2,

44

解得”=3+8證或〃=.3父強(qiáng).(舍);

44

(3)存在點(diǎn)尸,使以點(diǎn)。,E,F,P為頂點(diǎn)的四邊形是菱形,理由如下:

當(dāng)3x+6=-Wr+6-”時(shí),解得x=--^-n,

415

.,.F(--^-n,-—n+6),

155

當(dāng)EF、尸。為鄰邊時(shí),ED與FP為菱形的對角線,

:.ED±FP,

.?.尸P〃x軸,

:.P(6+-^-n,-—n+6'),

155

-—n+6=-—(6+-A_n)+6,

5415

解得"=a殳,

2

:.P(8,0);

當(dāng)E尸為菱形的對角線時(shí),F(xiàn)P//ED,

:.P(--^-n,A,?+6),

155

":PE=ED=n,

...E點(diǎn)向左平移魚?個(gè)單位,向上平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論