云浮市重點(diǎn)中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
云浮市重點(diǎn)中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
云浮市重點(diǎn)中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
云浮市重點(diǎn)中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
云浮市重點(diǎn)中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云浮市重點(diǎn)中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.2.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.12 B.10 C.8 D.3.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為()A. B. C. D.4.設(shè)不等式組表示的平面區(qū)域?yàn)?,若從圓:的內(nèi)部隨機(jī)選取一點(diǎn),則取自的概率為()A. B. C. D.5.已知集合,則集合的非空子集個(gè)數(shù)是()A.2 B.3 C.7 D.86.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.7.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.48.如圖,四邊形為正方形,延長至,使得,點(diǎn)在線段上運(yùn)動(dòng).設(shè),則的取值范圍是()A. B. C. D.9.如圖,用一邊長為的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.10.直線與圓的位置關(guān)系是()A.相交 B.相切 C.相離 D.相交或相切11.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.12.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q二、填空題:本題共4小題,每小題5分,共20分。13.在中,,是的角平分線,設(shè),則實(shí)數(shù)的取值范圍是__________.14.如圖是一個(gè)幾何體的三視圖,若它的體積是,則_________,該幾何體的表面積為_________.15.已知,,其中,為正的常數(shù),且,則的值為_______.16.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長為1,若向量、、滿足,則實(shí)數(shù)的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計(jì)男生6女生18合計(jì)60已知在該班隨機(jī)抽取1人測評(píng)結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為性別與測評(píng)結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02418.(12分)設(shè),函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)設(shè)函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點(diǎn);②求證:對(duì)任意的,直線都不是的切線;(2)設(shè)函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.19.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對(duì)恒成立,求的取值范圍.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.21.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.22.(10分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過程要注意.2、B【解析】

由等比數(shù)列的性質(zhì)求得,再由對(duì)數(shù)運(yùn)算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.3、B【解析】

利用復(fù)數(shù)的除法運(yùn)算化簡z,復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.4、B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對(duì)應(yīng)的圓心角,根據(jù)幾何概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因?yàn)橹本€,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點(diǎn)睛】本小題主要考查幾何概型的計(jì)算,考查線性可行域的畫法,屬于基礎(chǔ)題.5、C【解析】

先確定集合中元素,可得非空子集個(gè)數(shù).【詳解】由題意,共3個(gè)元素,其子集個(gè)數(shù)為,非空子集有7個(gè).故選:C.【點(diǎn)睛】本題考查集合的概念,考查子集的概念,含有個(gè)元素的集合其子集個(gè)數(shù)為,非空子集有個(gè).6、A【解析】

對(duì)復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡單題.7、A【解析】

采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對(duì)本題可以利用長方體,根據(jù)三視圖刪掉沒有的點(diǎn)與線,屬中檔題.8、C【解析】

以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長為1,則,,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.9、D【解析】

先求出球心到四個(gè)支點(diǎn)所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個(gè)支點(diǎn)所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點(diǎn)睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結(jié)論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.11、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱性,求出所求式子的最大值.12、C【解析】

解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設(shè),,,由得:,化簡得,由于,故.故答案為:【點(diǎn)睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算能力,屬于中檔題.14、;【解析】試題分析:如圖:此幾何體是四棱錐,底面是邊長為的正方形,平面平面,并且,,所以體積是,解得,四個(gè)側(cè)面都是直角三角形,所以計(jì)算出邊長,表面積是考點(diǎn):1.三視圖;2.幾何體的表面積.15、【解析】

把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點(diǎn)睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.16、【解析】

根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計(jì)算出的取值.【詳解】由圖可知:,所以,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運(yùn)算,難度較易.已知,若,則有.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“性別與測評(píng)結(jié)果有關(guān)系”(3)見解析.【解析】

(1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結(jié)合已知可得列聯(lián)表;(2)根據(jù)列聯(lián)表計(jì)算,比較后可得;(3)由于性別對(duì)結(jié)果有影響,因此用分層抽樣法.【詳解】解:(1)優(yōu)秀合格總計(jì)男生62228女生141832合計(jì)204060(2)由于,因此在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“性別與測評(píng)結(jié)果有關(guān)系”.(3)由(2)可知性別有可能對(duì)是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學(xué)生,這樣得到的結(jié)果對(duì)學(xué)生在該維度的總體表現(xiàn)情況會(huì)比較符合實(shí)際情況.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查分層抽樣的性質(zhì).考查學(xué)生的數(shù)據(jù)處理能力.屬于中檔題.18、(1)①函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明見解析;(2)且;【解析】

(1)①令,結(jié)合函數(shù)零點(diǎn)的判定定理判斷即可;②設(shè)切點(diǎn)橫坐標(biāo)為,求出切線方程,得到,根據(jù)函數(shù)的單調(diào)性判斷即可;(2)求出的解析式,通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,確定的范圍即可.【詳解】解:(1)①當(dāng)時(shí),函數(shù),令,,則,,故,又函數(shù)在區(qū)間上的圖象是不間斷曲線,故函數(shù)在區(qū)間上有零點(diǎn),故函數(shù)與的圖象在區(qū)間上有交點(diǎn);②證明:假設(shè)存在,使得直線是曲線的切線,切點(diǎn)橫坐標(biāo)為,且,則切線在點(diǎn)切線方程為,即,從而,且,消去,得,故滿足等式,令,所以,故函數(shù)在和上單調(diào)遞增,又函數(shù)在時(shí),故方程有唯一解,又,故不存在,即證;(2)由得,,,令,則,,當(dāng)時(shí),遞減,故當(dāng)時(shí),,遞增,當(dāng)時(shí),,遞減,故在處取得極大值,不合題意;時(shí),則在遞減,在,遞增,①當(dāng)時(shí),,故在遞減,可得當(dāng)時(shí),,當(dāng)時(shí),,,易證,令,,令,故,則,故在遞增,則,即時(shí),,故在,內(nèi)存在,使得,故在,上遞減,在,遞增,故在處取得極小值.②由(1)知,,故在遞減,在遞增,故時(shí),,遞增,不合題意;③當(dāng)時(shí),,當(dāng),時(shí),,遞減,當(dāng)時(shí),,遞增,故在處取極小值,符合題意,綜上,實(shí)數(shù)的范圍是且.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19、(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對(duì)值定義將不等式化為三個(gè)不等式組,分別求解集,最后求并集(2)根據(jù)絕對(duì)值三角不等式得最小值,再解含絕對(duì)值不等式可得的取值范圍.試題解析:(1)等價(jià)于或或,解得:或.故不等式的解集為或.(2)因?yàn)椋核?,由題意得:,解得或.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.20、(1);(2)面積的最小值為;四邊形的面積為【解析】

(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標(biāo)方程即可;(2)由(1)得曲線的極坐標(biāo)方程,設(shè),,,利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進(jìn)而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標(biāo)方程為,即,所以,曲線的直角坐標(biāo)方程.(2)依題意得的極坐標(biāo)方程為設(shè),,,則,,故,當(dāng)且僅當(dāng)(即)時(shí)取“=”,故,即面積的最小值為.此時(shí),故所求四邊形的面積為.【點(diǎn)睛】本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)椋唬á颍┮驗(yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論