山西省臨汾市市級名校2021-2022學年中考四模數(shù)學試題含解析_第1頁
山西省臨汾市市級名校2021-2022學年中考四模數(shù)學試題含解析_第2頁
山西省臨汾市市級名校2021-2022學年中考四模數(shù)學試題含解析_第3頁
山西省臨汾市市級名校2021-2022學年中考四模數(shù)學試題含解析_第4頁
山西省臨汾市市級名校2021-2022學年中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山西省臨汾市市級名校2021-2022學年中考四模數(shù)學試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.2.關(guān)于2、6、1、10、6的這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的眾數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的平均數(shù)是6 D.這組數(shù)據(jù)的方差是103.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°4.不等式組的解在數(shù)軸上表示為()A. B. C. D.5.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣36.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學計數(shù)法表示為()A. B. C. D.7.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數(shù)為()A.125° B.75° C.65° D.55°8.已知等腰三角形的兩邊長分別為5和6,則這個等腰三角形的周長為()A.11 B.16 C.17 D.16或179.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.510.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.12.如圖,拋物線交軸于,兩點,交軸于點,點關(guān)于拋物線的對稱軸的對稱點為,點,分別在軸和軸上,則四邊形周長的最小值為__________.13.二次根式中的字母a的取值范圍是_____.14.若不等式組1-x≤2,x>m有解,則15.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設(shè)甲每小時搬運xkg貨物,則可列方程為_____.16.如圖,點M是反比例函數(shù)(x>0)圖像上任意一點,MN⊥y軸于N,點P是x軸上的動點,則△MNP的面積為A.1 B.2 C.4 D.不能確定三、解答題(共8題,共72分)17.(8分)某班為了解學生一學期做義工的時間情況,對全班50名學生進行調(diào)查,按做義工的時間(單位:小時),將學生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.根據(jù)以上信息,解答下列問題:類學生有人,補全條形統(tǒng)計圖;類學生人數(shù)占被調(diào)查總?cè)藬?shù)的%;從該班做義工時間在的學生中任選2人,求這2人做義工時間都在中的概率.18.(8分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.求反比例函數(shù)的解析式;若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.19.(8分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.20.(8分)如圖1,AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.(1)求證:∠ACD=∠B;(2)如圖2,∠BDC的平分線分別交AC,BC于點E,F(xiàn),求∠CEF的度數(shù).21.(8分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.22.(10分)如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經(jīng)過點B、C,與x軸的另一個交點為點A(點A在點B的左側(cè)),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.23.(12分)為進一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?24.對x,y定義一種新運算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數(shù)式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造平行線解決問題,學會利用參數(shù)解決問題,屬于中考常考題型.2、A【解析】

根據(jù)方差、算術(shù)平均數(shù)、中位數(shù)、眾數(shù)的概念進行分析.【詳解】數(shù)據(jù)由小到大排列為1,2,6,6,10,它的平均數(shù)為(1+2+6+6+10)=5,數(shù)據(jù)的中位數(shù)為6,眾數(shù)為6,數(shù)據(jù)的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故選A.考點:方差;算術(shù)平均數(shù);中位數(shù);眾數(shù).3、C【解析】

由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,由三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴,由折疊的性質(zhì)得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.4、C【解析】

先解每一個不等式,再根據(jù)結(jié)果判斷數(shù)軸表示的正確方法.【詳解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴數(shù)軸表示的正確方法為C.故選C.【點睛】考核知識點:解不等式組.5、D【解析】

先得到拋物線y=x2的頂點坐標(0,0),再根據(jù)點平移的規(guī)律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.6、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】數(shù)據(jù)0.000000007用科學記數(shù)法表示為7×10-1.故選A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、D【解析】

延長CB,根據(jù)平行線的性質(zhì)求得∠1的度數(shù),則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質(zhì),解題的關(guān)鍵是熟練的掌握平行線的性質(zhì).8、D【解析】試題分析:由等腰三角形的兩邊長分別是5和6,可以分情況討論其邊長為5,5,6或者5,6,6,均滿足三角形兩邊之和大于第三邊,兩邊之差小于第三邊的條件,所以此等腰三角形的周長為5+5+6=16或5+6+6=17.故選項D正確.考點:三角形三邊關(guān)系;分情況討論的數(shù)學思想9、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B10、A【解析】

連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、40°【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得出AB=AD、∠BAD=100°,再根據(jù)等腰三角形的性質(zhì)可求出∠B的度數(shù),此題得解.【詳解】根據(jù)旋轉(zhuǎn)的性質(zhì),可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及等腰三角形的性質(zhì),根據(jù)旋轉(zhuǎn)的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠B的度數(shù)是解題的關(guān)鍵.12、【解析】

根據(jù)拋物線解析式求得點D(1,4)、點E(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4)、作點E關(guān)于x軸的對稱點E′(2,﹣3),從而得到四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′,當點D′、F、G、E′四點共線時,周長最短,據(jù)此根據(jù)勾股定理可得答案.【詳解】如圖,在y=﹣x2+2x+3中,當x=0時,y=3,即點C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴對稱軸為x=1,頂點D(1,4),則點C關(guān)于對稱軸的對稱點E的坐標為(2,3),作點D關(guān)于y軸的對稱點D′(﹣1,4),作點E關(guān)于x軸的對稱點E′(2,﹣3),連結(jié)D′、E′,D′E′與x軸的交點G、與y軸的交點F即為使四邊形EDFG的周長最小的點,四邊形EDFG的周長=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′==∴四邊形EDFG周長的最小值是.【點睛】本題主要考查拋物線的性質(zhì)以及兩點間的距離公式,解題的關(guān)鍵是熟練掌握拋物線的性質(zhì),利用數(shù)形結(jié)合得出答案.13、a≥﹣1.【解析】

根據(jù)二次根式的被開方數(shù)為非負數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數(shù)為非負數(shù)是解答本題的關(guān)鍵.14、m<2【解析】分析:解出不等式組的解集,然后根據(jù)解集的取值范圍來確定m的取值范圍.解答:解:由1-x≤2得x≥-1又∵x>m根據(jù)同大取大的原則可知:若不等式組的解集為x≥-1時,則m≤-1若不等式組的解集為x≥m時,則m≥-1.故填m≤-1或m≥-1.點評:本題是已知不等式組的解集,求不等式中另一未知數(shù)的問題.可以先將另一未知數(shù)當作已知處理,求出解集再利用不等式組的解集的確定原則來確定未知數(shù)的取值范圍.15、=【解析】

設(shè)甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據(jù)甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結(jié)論.【詳解】解:設(shè)甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【點睛】本題考查了由實際問題抽象出分式方程,根據(jù)題意找到等量關(guān)系是關(guān)鍵.16、A【解析】

可以設(shè)出M的坐標,的面積即可利用M的坐標表示,據(jù)此即可求解.【詳解】設(shè)M的坐標是(m,n),則mn=2.則MN=m,的MN邊上的高等于n.則的面積故選A.【點睛】考查反比例函數(shù)系數(shù)k的幾何意義,是??键c,需要學生熟練掌握.三、解答題(共8題,共72分)17、(1)5;(2)36%;(3).【解析】試題分析:(1)根據(jù):數(shù)據(jù)總數(shù)-已知的小組頻數(shù)=所求的小組頻數(shù),進行求解,然后根據(jù)所求數(shù)據(jù)補全條形圖即可;(2)根據(jù):小組頻數(shù)=,進行求解即可;(3)利用列舉法求概率即可.試題解析:(1)E類:50-2-3-22-18=5(人),故答案為:5;補圖如下:(2)D類:1850×100%=36%,故答案為:36%;(3)設(shè)這5人為有以下10種情況:其中,兩人都在的概率是:.18、(1)y=;(2)1;【解析】

(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.【詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數(shù)解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數(shù)得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點睛】本題為反比例函數(shù)的綜合應用,考查的知識點有待定系數(shù)法、平行四邊形的性質(zhì)、中點的求法.在(1)中注意待定系數(shù)法的應用,在(2)中用m表示出E點的坐標是解題的關(guān)鍵.19、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實際水平.【解析】

(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個經(jīng)理的介紹不能反映該公司員工的月工資實際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實際水平.20、(1)詳見解析;(2)∠CEF=45°.【解析】試題分析:(1)連接OC,根據(jù)切線的性質(zhì)和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據(jù)等角的余角相等即可得出結(jié)論;(2)根據(jù)三角形的外角的性質(zhì)證明∠CEF=∠CFE即可求解.試題解析:(1)證明:如圖1中,連接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切線,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直徑,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.21、(1)CD=BE,理由見解析;(1)證明見解析.【解析】

(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得△EAB≌△CAD,即可得出結(jié)論;(1)根據(jù)(1)中結(jié)論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結(jié)論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,結(jié)合題意尋找出三角形全等的條件是解決此題的關(guān)鍵.22、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】

(2)由直線y=﹣x+3分別與x軸、y交于點B、C求得點B、C的坐標,再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點坐標為D(2,﹣2),當直線l2經(jīng)過點D時求得m=﹣2;當直線l2經(jīng)過點C時求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當直線l2在x軸的下方時,點Q在點P、N之間和當直線l2在x軸的上方時,點N在點P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點B(3,2),C(2,3)的坐標代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點為D(2,﹣2),當直線l2經(jīng)過點D時,m=﹣2;當直線l2經(jīng)過點C時,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當直線l2在x軸的下方時,點Q在點P、N之間,若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點P、Q關(guān)于拋物線的對稱軸l2對稱,又拋物線的對稱軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點Q(x2,y2)的坐標代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負值已舍去),∴m=()2﹣4×+3=如圖②,當直線l2在x軸的上方時,點N在點P、Q之間,若三個點P、Q、N中恰好有一點是其他兩點所連線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論