版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省宿遷市鐘吾國際校2021-2022學(xué)年中考聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=x2+3向左平移2個單位,那么平移后的拋物線表達(dá)式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+52.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm3.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°4.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點(diǎn)D是CB延長線上的一點(diǎn),且BD=BA,則tan∠DAC的值為()A. B.2 C. D.35.我省2013年的快遞業(yè)務(wù)量為1.2億件,受益于電子商務(wù)發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務(wù)迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務(wù)量達(dá)到2.5億件,設(shè)2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.56.在實(shí)數(shù)﹣,0.21,,,,0.20202中,無理數(shù)的個數(shù)為()A.1 B.2 C.3 D.47.等腰中,,D是AC的中點(diǎn),于E,交BA的延長線于F,若,則的面積為()A.40 B.46 C.48 D.508.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a69.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點(diǎn),則CM的長為()A. B.2 C. D.310.化簡:(a+)(1﹣)的結(jié)果等于()A.a(chǎn)﹣2 B.a(chǎn)+2 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.關(guān)于的一元二次方程有兩個相等的實(shí)數(shù)根,則________.12.如圖,等邊三角形的頂點(diǎn)A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為_____.13.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.14.如圖,已知點(diǎn)A是一次函數(shù)y=x(x≥0)圖象上一點(diǎn),過點(diǎn)A作x軸的垂線l,B是l上一點(diǎn)(B在A上方),在AB的右側(cè)以AB為斜邊作等腰直角三角形ABC,反比例函數(shù)y=(x>0)的圖象過點(diǎn)B,C,若△OAB的面積為5,則△ABC的面積是________.15.因式分解:2b2a2﹣a3b﹣ab3=_____.16.如圖,菱形ABCD的邊長為15,sin∠BAC=3517.某風(fēng)扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學(xué)記數(shù)法表示為_____.三、解答題(共7小題,滿分69分)18.(10分)某校開展“我最喜愛的一項(xiàng)體育活動”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.請結(jié)合以上信息解答下列問題:m=;請補(bǔ)全上面的條形統(tǒng)計圖;在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為;已知該校共有1200名學(xué)生,請你估計該校約有名學(xué)生最喜愛足球活動.19.(5分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點(diǎn)M(B,M,D三點(diǎn)在一條直線上)處測得建筑物頂端A、塔項(xiàng)C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)20.(8分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.21.(10分)閱讀材料:對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.即如圖①,若PA=PB,則點(diǎn)P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點(diǎn)D在AB上,點(diǎn)E是線段CD上的一動點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.(I)旋轉(zhuǎn)中心是點(diǎn),旋轉(zhuǎn)了(度);(II)當(dāng)點(diǎn)E從點(diǎn)D向點(diǎn)C移動時,連結(jié)AF,設(shè)AF與CD交于點(diǎn)P,在圖②中將圖形補(bǔ)全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.22.(10分)如圖,矩形擺放在平面直角坐標(biāo)系中,點(diǎn)在軸上,點(diǎn)在軸上,.(1)求直線的表達(dá)式;(2)若直線與矩形有公共點(diǎn),求的取值范圍;(3)直線與矩形沒有公共點(diǎn),直接寫出的取值范圍.23.(12分)如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,線段BC與拋物線的對稱軸交于點(diǎn)E、P為線段BC上的一點(diǎn)(不與點(diǎn)B、C重合),過點(diǎn)P作PF∥y軸交拋物線于點(diǎn)F,連結(jié)DF.設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求此拋物線所對應(yīng)的函數(shù)表達(dá)式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.24.(14分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,0),點(diǎn)B(0,4),把△ABO繞點(diǎn)A順時針旋轉(zhuǎn),得△AB′O′,點(diǎn)B,O旋轉(zhuǎn)后的對應(yīng)點(diǎn)為B′,O.(1)如圖1,當(dāng)旋轉(zhuǎn)角為90°時,求BB′的長;(2)如圖2,當(dāng)旋轉(zhuǎn)角為120°時,求點(diǎn)O′的坐標(biāo);(3)在(2)的條件下,邊OB上的一點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為P′,當(dāng)O′P+AP′取得最小值時,求點(diǎn)P′的坐標(biāo).(直接寫出結(jié)果即可)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
結(jié)合向左平移的法則,即可得到答案.【詳解】解:將拋物線y=x2+3向左平移2個單位可得y=(x+2)2+3,故選A.【點(diǎn)睛】此類題目主要考查二次函數(shù)圖象的平移規(guī)律,解題的關(guān)鍵是要搞清已知函數(shù)解析式確定平移后的函數(shù)解析式,還是已知平移后的解析式求原函數(shù)解析式,然后根據(jù)圖象平移規(guī)律“左加右減、上加下減“進(jìn)行解答.2、D【解析】分析:根據(jù)垂徑定理得出OE的長,進(jìn)而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點(diǎn)睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.3、C【解析】
如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.4、A【解析】
設(shè)AC=a,由特殊角的三角函數(shù)值分別表示出BC、AB的長度,進(jìn)而得出BD、CD的長度,由公式求出tan∠DAC的值即可.【詳解】設(shè)AC=a,則BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故選A.【點(diǎn)睛】本題主要考查特殊角的三角函數(shù)值.5、C【解析】試題解析:設(shè)2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.6、C【解析】在實(shí)數(shù)﹣,0.21,,,,0.20202中,根據(jù)無理數(shù)的定義可得其中無理數(shù)有﹣,,,共三個.故選C.7、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點(diǎn),∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.8、D【解析】各項(xiàng)計算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D9、C【解析】
延長BC到E使BE=AD,利用中點(diǎn)的性質(zhì)得到CM=DE=AB,再利用勾股定理進(jìn)行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點(diǎn),∵M(jìn)是BD的中點(diǎn),∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點(diǎn)睛】此題考查平行四邊形的性質(zhì),勾股定理,解題關(guān)鍵在于作輔助線.10、B【解析】
解:原式====.故選B.考點(diǎn):分式的混合運(yùn)算.二、填空題(共7小題,每小題3分,滿分21分)11、-1.【解析】
根據(jù)根的判別式計算即可.【詳解】解:依題意得:∵關(guān)于的一元二次方程有兩個相等的實(shí)數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點(diǎn)睛】本題考查了一元二次方程根的判別式,當(dāng)=>0時,方程有兩個不相等的實(shí)數(shù)根;當(dāng)==0時,方程有兩個相等的實(shí)數(shù)根;當(dāng)=<0時,方程無實(shí)數(shù)根.12、(﹣2016,+1)【解析】
據(jù)軸對稱判斷出點(diǎn)C變換后在x軸上方,然后求出點(diǎn)C縱坐標(biāo),再根據(jù)平移的距離求出點(diǎn)A變換后的橫坐標(biāo),最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點(diǎn)C到x軸的距離為1+2×=+1,橫坐標(biāo)為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點(diǎn)C的縱坐標(biāo)為+1,橫坐標(biāo)為2﹣2018×1=﹣2016,所以,點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)是(﹣2016,+1)故答案為:(﹣2016,+1)【點(diǎn)睛】本題考查坐標(biāo)與圖形變化,平移和軸對稱變換,等邊三角形的性質(zhì),讀懂題目信息,確定出連續(xù)2018次這樣的變換得到三角形在x軸上方是解題的關(guān)鍵.13、50【解析】
由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得
=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案為50【點(diǎn)睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.14、【解析】
如圖,過C作CD⊥y軸于D,交AB于E.設(shè)AB=2a,則BE=AE=CE=a,再設(shè)A(x,x),則B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函數(shù)的圖象上可得x(x+2a)=(x+a)(x+a),解得x=3a,由△OAB的面積為5求得ax=5,即可得a2=,根據(jù)S△ABC=AB?CE即可求解.【詳解】如圖,過C作CD⊥y軸于D,交AB于E.∵AB⊥x軸,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,設(shè)AB=2a,則BE=AE=CE=a,設(shè)A(x,x),則B(x,x+2a),C(x+a,x+a),∵B、C在反比例函數(shù)的圖象上,∴x(x+2a)=(x+a)(x+a),解得x=3a,∵S△OAB=AB?DE=?2a?x=5,∴ax=5,∴3a2=5,∴a2=,∴S△ABC=AB?CE=?2a?a=a2=.故答案為:.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形的性質(zhì)、三角形面積,熟練掌握反比例函數(shù)上的點(diǎn)符合反比例函數(shù)的關(guān)系式是關(guān)鍵.15、﹣ab(a﹣b)2【解析】
首先確定公因式為ab,然后提取公因式整理即可.【詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【點(diǎn)睛】本題考查了因式分解-提公因式法,解題的關(guān)鍵是掌握提公因式法的概念.16、24【解析】試題分析:因?yàn)樗倪呅蜛BCD是菱形,根據(jù)菱形的性質(zhì)可知,BD與AC互相垂直且平分,因?yàn)閟in∠BAC=35,AB=10,所以1考點(diǎn):三角函數(shù)、菱形的性質(zhì)及勾股定理;17、1.57×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將1570000用科學(xué)記數(shù)法表示為1.57×1.故答案為1.57×1.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、(1)150,(2)36°,(3)1.【解析】
(1)根據(jù)圖中信息列式計算即可;(2)求得“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計圖即可;(3)360°×乒乓球”所占的百分比即可得到結(jié)論;(4)根據(jù)題意計算即可.【詳解】(1)m=21÷14%=150,(2)“足球“的人數(shù)=150×20%=30人,補(bǔ)全上面的條形統(tǒng)計圖如圖所示;(3)在圖2中,“乒乓球”所對應(yīng)扇形的圓心角的度數(shù)為360°×=36°;(4)1200×20%=1人,答:估計該校約有1名學(xué)生最喜愛足球活動.故答案為150,36°,1.【點(diǎn)睛】本題考查了條形統(tǒng)計圖,觀察條形統(tǒng)計圖、扇形統(tǒng)計圖獲得有效信息是解題關(guān)鍵.19、通信塔CD的高度約為15.9cm.【解析】
過點(diǎn)A作AE⊥CD于E,設(shè)CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關(guān)于x的方程,求出方程的解即可.【詳解】過點(diǎn)A作AE⊥CD于E,則四邊形ABDE是矩形,設(shè)CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度約為15.9cm.【點(diǎn)睛】本題考查了解直角三角形,能通過解直角三角形求出AE、BM的長度是解此題的關(guān)鍵.20、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設(shè)PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.21、B60【解析】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出結(jié)論;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BF=CF,則點(diǎn)F在線段BC的垂直平分線上,又由AC=AB,可得點(diǎn)A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進(jìn)而得出∠APC的度數(shù).詳解:(1)B,60;(2)補(bǔ)全圖形如圖所示;的大小保持不變,理由如下:設(shè)與交于點(diǎn)∵直線是等邊的對稱軸∴,∵經(jīng)順時針旋轉(zhuǎn)后與重合∴,∴∴點(diǎn)在線段的垂直平分線上∵∴點(diǎn)在線段的垂直平分線上∴垂直平分,即∴點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟記旋轉(zhuǎn)的性質(zhì)及垂直平分線的性質(zhì),注意只證明一點(diǎn)是不能說明這條直線是垂直平分線的.22、(1);(2);(3)【解析】
(1)由條件可求得A、C的坐標(biāo),利用待定系數(shù)法可求得直線AC的表達(dá)式;(2)結(jié)合圖形,當(dāng)直線平移到過C、A時與矩形有一個公共點(diǎn),則可求得b的取值范圍;(3)由題意可知直線l過(0,10),結(jié)合圖象可知當(dāng)直線過B點(diǎn)時與矩形有一個公共點(diǎn),結(jié)合圖象可求得k的取值范圍.【詳解】解:(1),設(shè)直線表達(dá)式為,,解得直線表達(dá)式為;(2)直線可以看到是由直線平移得到,當(dāng)直線過時,直線與矩形有一個公共點(diǎn),如圖1,當(dāng)過點(diǎn)時,代入可得,解得.當(dāng)過點(diǎn)時,可得直線與矩形有公共點(diǎn)時,的取值范圍為;(3),直線過,且,如圖2,直線繞點(diǎn)旋轉(zhuǎn),當(dāng)直線過點(diǎn)時,與矩形有一個公共點(diǎn),逆時針旋轉(zhuǎn)到與軸重合時與矩形有公共點(diǎn),當(dāng)過點(diǎn)時,代入可得,解得直線:與矩形沒有公共點(diǎn)時的取值范圍為【點(diǎn)睛】本題為一次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、直線的平移、旋轉(zhuǎn)及數(shù)形結(jié)合思想等知識.在(1)中利用待定系數(shù)法是解題的關(guān)鍵,在(2)、(3)中確定出直線與矩形OABC有一個公共點(diǎn)的位置是解題的關(guān)鍵.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度適中.23、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得答案;(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點(diǎn)坐標(biāo),根據(jù)平行于y軸的直線上兩點(diǎn)之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.【詳解】解:(1)∵點(diǎn)A(-1,0),點(diǎn)B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+1,∴C(0,1).設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點(diǎn)的坐標(biāo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)保密協(xié)議書編寫技巧
- 物業(yè)租賃代理費(fèi)用基金合同
- 股權(quán)代持入股合作協(xié)議書
- 2024購銷合同協(xié)議精要
- 二手電動自行車轉(zhuǎn)讓合同
- 2024版企業(yè)技術(shù)成果保護(hù)協(xié)議
- 影視作品制片權(quán)許可合同
- 土地使用權(quán)轉(zhuǎn)讓協(xié)議書示例
- 2024年設(shè)立股份公司資金注入?yún)f(xié)議
- 七年級地理上冊-5.1-世界的人口教案-商務(wù)星球版(1)(2021學(xué)年)
- 幼兒園:我中獎了(實(shí)驗(yàn)版)
- 趙學(xué)慧-老年社會工作理論與實(shí)務(wù)-教案
- 《世界主要海峽》
- 住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)
- “三新”背景下的數(shù)學(xué)課堂教學(xué) 論文
- 中央企業(yè)商業(yè)秘密安全保護(hù)技術(shù)指引2015版
- 螺旋果蔬榨汁機(jī)的設(shè)計
- 《脊柱整脊方法》
- 會計與財務(wù)管理專業(yè)英語智慧樹知到答案章節(jié)測試2023年哈爾濱商業(yè)大學(xué)
- 廣東省2020年中考英語試題【含答案】
- 0417 教學(xué)能力大賽 公共基礎(chǔ)《英語 》教學(xué)實(shí)施報告 電子商務(wù)專業(yè)
評論
0/150
提交評論