版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省遵義市正安一中2025屆數(shù)學高一下期末教學質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若等差數(shù)列的前5項之和,且,則()A.12 B.13 C.14 D.152.若三棱錐中,,,,且,,,則該三棱錐外接球的表面積為()A. B. C. D.3.已知點、、在圓上運動,且,若點的坐標為,的最大值為()A. B. C. D.4.已知圓,直線.設(shè)圓O上到直線l的距離等于2的點的個數(shù)為k,則()A.1 B.2 C.3 D.45.設(shè)均為正數(shù),且,,.則()A. B. C. D.6.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.47.圓的圓心坐標和半徑分別為()A. B. C. D.8.若直線與直線平行,則實數(shù)A.0 B.1 C. D.9.設(shè)為銳角,,若與共線,則角()A.15° B.30° C.45° D.60°10.在中,分別為角的對邊),則的形狀是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形二、填空題:本大題共6小題,每小題5分,共30分。11.一個扇形的半徑是,弧長是,則圓心角的弧度數(shù)為________.12.若數(shù)列滿足(),且,,__.13.已知點和點,點在軸上,若的值最小,則點的坐標為______.14.已知,且關(guān)于的方程有實數(shù)根,則與的夾角的取值范圍是______.15.函數(shù)的值域為__________.16.已知無窮等比數(shù)列的所有項的和為,則首項的取值范圍為_____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足,.(1)證明:是等比數(shù)列;(2)求數(shù)列的前n項和.18.某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x≥12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).(1)求樓房每平方米的平均綜合費用f(x)的解析式.(2)為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費用最小值是多少?(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)19.在中,角對應(yīng)的邊分別是,且.(1)求的周長;(2)求的值.20.已知公差不為的等差數(shù)列滿足.若,,成等比數(shù)列.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.21.我市某商場銷售小飾品,已知小飾品的進價是每件3元,且日均銷售量件與銷售單價元可以用這一函數(shù)模型近似刻畫.當銷售單價為4元時,日均銷售量為400件,當銷售單價為8元時,日均銷售量為240件.試求出該小飾品的日均銷售利潤的最大值及此時的銷售單價.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由題意得,,又,則,又,所以等差數(shù)列的公差為,所以.考點:等差數(shù)列的通項公式.2、B【解析】
將棱錐補成長方體,根據(jù)長方體的外接球的求解方法法得到結(jié)果.【詳解】根據(jù)題意得到棱錐的三條側(cè)棱兩兩垂直,可以以三條側(cè)棱為長方體的楞,該三棱錐補成長方體,兩者的外接球是同一個,外接球的球心是長方體的體對角線的中點處。設(shè)球的半徑為R,則表面積為故答案為:B.【點睛】本題考查了球與幾何體的問題,是高考中的重點問題,要有一定的空間想象能力,這樣才能找準關(guān)系,得到結(jié)果,一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線(這兩個多邊形需有公共點),這樣兩條直線的交點,就是其外接球的球心,再根據(jù)半徑,頂點到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時也可利用補體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補成長方體,它們是同一個外接球.3、C【解析】
由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標原點),由平面向量模的三角不等式可得,當且僅當點的坐標為時,等號成立,因此,的最大值為.故選:C.【點睛】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.4、B【解析】
找出圓O的圓心坐標與半徑r,利用點到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關(guān)系及r-d的值,即可作出判斷.【詳解】由圓的方程得到圓心O(0,0),半徑,∵圓心O到直線l的距離,且r?d=?1<2,∴圓O上到直線l的距離等于2的點的個數(shù)為2,即k=2.故選:B.【點睛】本題考查直線與圓的位置關(guān)系,利用圓心到直線的距離公式求出圓心O到直線l的距離d,根據(jù)d與r的大小關(guān)系可判斷直線與圓的位置,考查計算和幾何應(yīng)用能力,屬于基礎(chǔ)題.5、A【解析】試題分析:在同一坐標系中分別畫出,,的圖象,與的交點的橫坐標為,與的圖象的交點的橫坐標為,與的圖象的交點的橫坐標為,從圖象可以看出.考點:指數(shù)函數(shù)、對數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用.【方法點睛】一般一個方程中含有兩個以上的函數(shù)類型,就要考慮用數(shù)形結(jié)合求解,在同一坐標系中畫出兩函數(shù)圖象的交點,函數(shù)圖象的交點的橫坐標即為方程的解.6、A【解析】
等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【點睛】本題考查數(shù)列的遞推式的運用,等比數(shù)列的定義和通項公式,考查方程思想和運算能力,屬于基礎(chǔ)題.7、B【解析】
根據(jù)圓的標準方程形式直接確定出圓心和半徑.【詳解】因為圓的方程為:,所以圓心為,半徑,故選:B.【點睛】本題考查給定圓的方程判斷圓心和半徑,難度較易.圓的標準方程為,其中圓心是,半徑是.8、B【解析】
根據(jù)兩直線的平行關(guān)系,列出方程,即可求解實數(shù)的值,得到答案.【詳解】由題意,當時,顯然兩條直線不平行,所以;由兩條直線平行可得:,解得,當時,直線方程分別為:,,顯然平行,符合題意;當時,直線方程分別為,,很顯然兩條直線重合,不合題意,舍去,所以,故選B.【點睛】本題主要考查了兩直線的位置關(guān)系的應(yīng)用,其中解答中熟記兩直線平行的條件,準去計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.9、B【解析】由題意,,又為銳角,∴.故選B.10、A【解析】
根據(jù)正弦定理得到,化簡得到,得到,得到答案.【詳解】,則,即,即,,故,.故選:.【點睛】本題考查了正弦定理判斷三角形形狀,意在考查學生的計算能力和轉(zhuǎn)化能力.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
直接根據(jù)弧長公式,可得.【詳解】因為,所以,解得【點睛】本題主要考查弧長公式的應(yīng)用.12、1【解析】
由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構(gòu)成首項為1,公比為,偶數(shù)項構(gòu)成首項為,公比為的等比數(shù)列,當為奇數(shù)時,可得,當為偶數(shù)時,可得.所以.故答案為:1.【點睛】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】
作出圖形,作點關(guān)于軸的對稱點,由對稱性可知,結(jié)合圖形可知,當、、三點共線時,取最小值,并求出直線的方程,與軸方程聯(lián)立,即可求出點的坐標.【詳解】如下圖所示,作點關(guān)于軸的對稱點,由對稱性可知,則,當且僅當、、三點共線時,的值最小,直線的斜率為,直線的方程為,即,聯(lián)立,解得,因此,點的坐標為.故答案為:.【點睛】本題考查利用折線段長的最小值求點的坐標,涉及兩點關(guān)于直線對稱性的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.14、【解析】
先由得出,再根據(jù)即可求出與的夾角的取值范圍.【詳解】因為關(guān)于的方程有實數(shù)根,所以,即,設(shè)與的夾角為,所以,因為,所以,即與的夾角的取值范圍是【點睛】本題主要考查平面向量的夾角公式的應(yīng)用等,屬基礎(chǔ)題.15、【解析】
本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.16、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項的和為,則,.當時,則,此時,;當時,則,此時,.因此,首項的取值范圍是.故答案為:.【點睛】本題考查利用無窮等比數(shù)列的和求首項的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)由題設(shè),化簡得,即可證得數(shù)列為等比數(shù)列.(2)由(1),根據(jù)等比數(shù)列的通項公式,求得,利用等比數(shù)列的前n項和公式,即可求得數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列滿足,所以又因為,所以,即,所以是以2為首項,2為公比的等比數(shù)列.(2)由(1),根據(jù)等比數(shù)列的通項公式,可得,即,所以,即.【點睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的通項公式及前n項和公式的應(yīng)用,其中解答中熟記等比數(shù)列的定義,以及等比數(shù)列的通項公式和前n項和的公式,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1);(2)該樓房應(yīng)建為20層,每平方米的平均綜合費用最小值為5000元.【解析】【試題分析】先建立樓房每平方米的平均綜合費用函數(shù),再應(yīng)基本不等式求其最小值及取得極小值時:解:設(shè)樓房每平方米的平均綜合費用,,當且僅當時,等號取到.所以,當時,最小值為5000元.19、(1)(2)【解析】
(1)由余弦定理求得,從而得周長;(2)由余弦定理求得,由平方關(guān)系得,同理得,然后由兩角差的余弦公式得結(jié)論.【詳解】解:(1)在中,,由余弦定理,得,即,∴的周長為(2)由,得,由,得,于是.【點睛】本題考查余弦定理和兩角差的余弦公式,考查同角間的三角函數(shù)關(guān)系式,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)根據(jù)對比中項的性質(zhì)即可得出一個式子,再帶入等差數(shù)列的通項公式即可求出公差.(2)根據(jù)(1)的結(jié)果,利用分組求和即可解決.【詳解】(1)因為成等比數(shù)列,所以,所以,即,因為,所以,所以;(2)因為,所以,,.【點睛】本題主要考查了等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目實施方案及進度計劃
- 水下建筑行業(yè)營銷策略方案
- 智能物流機器人行業(yè)營銷策略方案
- 焊接領(lǐng)域的研究行業(yè)營銷策略方案
- 燃氣管道施工方案很好
- 無人駕駛與機器學習行業(yè)營銷策略方案
- 城市停車難解決方案探討
- 勞動教育系列活動方案
- 擬人機器人的出租行業(yè)營銷策略方案
- 《巖土工程施工技術(shù)實訓報告:S項目基坑施工方案》4500字(論文)
- 北師大版六年級數(shù)學上冊第五單元數(shù)據(jù)處理單元測試卷及答案
- (2024年)Photoshop基礎(chǔ)入門到精通教程全套
- 《東北的振興》課件
- 2024年中職《餐飲服務(wù)與管理》職教高考必備考試題庫(含答案)
- 2024年中核武漢核電運行技術(shù)股份有限公司招聘筆試參考題庫含答案解析
- 背景調(diào)查管理規(guī)定模版
- 房地產(chǎn)公司設(shè)計類技術(shù)筆試(2018-2023年)真題摘選含答案
- 誤吸急救處理護理課件
- 《土地資源》一師一優(yōu)課2(第1課時)
- iml工藝設(shè)計要求
- 新概念英語第2冊課文(完整版)
評論
0/150
提交評論