2025屆安徽省明光市二中數(shù)學高一下期末檢測試題含解析_第1頁
2025屆安徽省明光市二中數(shù)學高一下期末檢測試題含解析_第2頁
2025屆安徽省明光市二中數(shù)學高一下期末檢測試題含解析_第3頁
2025屆安徽省明光市二中數(shù)學高一下期末檢測試題含解析_第4頁
2025屆安徽省明光市二中數(shù)學高一下期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆安徽省明光市二中數(shù)學高一下期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若兩個正實數(shù),滿足,且不等式有解,則實數(shù)的取值范圍是()A. B. C. D.2.已知數(shù)列滿足是數(shù)列的前項和,則()A. B. C. D.3.某同學使用計算器求30個數(shù)據(jù)的平均數(shù)時,錯將其中一個數(shù)據(jù)105輸入為15,那么由此求出的平均數(shù)與實際平均數(shù)的差是()A.3.5 B.3 C.-0.5 D.-34.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.325.產(chǎn)能利用率是指實際產(chǎn)出與生產(chǎn)能力的比率,工業(yè)產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.據(jù)上述信息,下列結(jié)論中正確的是()A.2015年第三季度環(huán)比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度環(huán)比有所提高6.已知函數(shù)f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,167.圓與圓的位置關(guān)系是()A.相離 B.相交 C.相切 D.內(nèi)含8.已知向量,,若與的夾角為,則()A.2 B. C. D.19.(2015新課標全國I理科)《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有委米依垣內(nèi)角,下周八尺,高五尺.問:積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆為一個圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米約有A.14斛 B.22斛C.36斛 D.66斛10.直線x﹣y+2=0與圓x2+(y﹣1)2=4的位置關(guān)系是()A.相交 B.相切 C.相離 D.不確定二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,長方體的體積是120,E為的中點,則三棱錐E-BCD的體積是_____.12.在正項等比數(shù)列中,,,則公比________.13.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進行檢驗,則應從丙種型號的產(chǎn)品中抽取________件.14.若點到直線的距離是,則實數(shù)=______.15.已知數(shù)列的前n項和,則___________.16.給出以下四個結(jié)論:①平行于同一直線的兩條直線互相平行;②垂直于同一平面的兩個平面互相平行;③若,是兩個平面;,是異面直線;且,,,,則;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心;其中錯誤結(jié)論的序號為__________.(要求填上所有錯誤結(jié)論的序號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,D是線段AB上靠近B的一個三等分點,E是線段AC上靠近A的一個四等分點,,設,.(1)用,表示;(2)設G是線段BC上一點,且使,求的值.18.設數(shù)列的前項和為,點均在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).19.(1)設1<x<,求函數(shù)y=x(3﹣2x)的最大值;(2)解關(guān)于x的不等式x2-(a+1)x+a<1.20.如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.(1)要使矩形的面積大于64平方米,則的長應在什么范圍內(nèi)?(2)當?shù)拈L為多少時,矩形花壇的面積最?。坎⑶蟪鲎钚≈?21.已知函數(shù).(Ⅰ)求的定義域;(Ⅱ)設是第一象限角,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用基本不等式求得的最小值,根據(jù)不等式存在性問題,解一元二次不等式求得的取值范圍.【詳解】由于,而不等式有解,所以,即,解得或.故選:D【點睛】本小題主要考查利用基本不等式求最小值,考查不等式存在性問題的求解,考查一元二次不等式的解法,屬于中檔題.2、D【解析】

由已知遞推關(guān)系式可以推出數(shù)列的特征,即數(shù)列和均是等比數(shù)列,利用等比數(shù)列性質(zhì)求解即可.【詳解】解:由已知可得,當時,由得,所以數(shù)列和均是公比為2的等比數(shù)列,首項分別為2和1,由等比數(shù)列知識可求得,,故選:D.【點睛】本題主要考查遞推關(guān)系式,及等比數(shù)列的相關(guān)知識,屬于中檔題.3、D【解析】

因為錯將其中一個數(shù)據(jù)105輸入為15,所以此時求出的數(shù)比實際的數(shù)差是,因此平均數(shù)之間的差是.故答案為D4、B【解析】

根據(jù),則即可求解.【詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點睛】本題主要考查了方差的概念及求法,屬于容易題.5、C【解析】

根據(jù)同比和環(huán)比的定義比較兩期數(shù)據(jù)得出結(jié)論.【詳解】解:2015年第二季度利用率為74.3%,第三季度利用率為74.0%,故2015年第三季度環(huán)比有所下降,故A錯誤;2015年第一季度利用率為74.2%,2016年第一季度利用率為72.9%,故2016年第一季度同比有所下降,故B錯誤;2016年底三季度利用率率為73.2%,2017年第三季度利用率為76.8%,故2017年第三季度同比有所提高,故C正確;2017年第四季度利用率為78%,2018年第一季度利用率為76.5%,故2018年第一季度環(huán)比有所下降,故D錯誤.故選C.【點睛】本題考查了新定義的理解,圖表認知,考查分析問題解決問題的能力,屬于基礎題.6、B【解析】

由題得ωπ-π3<ωx-【詳解】因為π<x≤2π,ω>0,所以ωπ-π因為fx在區(qū)間(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因為k+1所以-4因為k∈Z,所以k=-1或k=0.當k=-1時,0<ω<16;當k=0時,故選:B【點睛】本題主要考查三角函數(shù)的零點問題和三角函數(shù)的圖像和性質(zhì),意在考查學生對該知識的理解掌握水平,屬于中檔題.7、B【解析】

計算圓心距,判斷與半徑和差的關(guān)系得到位置關(guān)系.【詳解】圓心距相交故答案選B【點睛】本題考查了兩圓的位置關(guān)系,判斷圓心距與半徑和差的關(guān)系是解題的關(guān)鍵.8、B【解析】

先計算與的模,再根據(jù)向量數(shù)量積的性質(zhì)即可計算求值.【詳解】因為,,所以,.又,所以,故選B.【點睛】本題主要考查了向量的坐標運算,向量的數(shù)量積,向量的模的計算,屬于中檔題.9、B【解析】試題分析:設圓錐底面半徑為r,則14×2×3r=8,所以r=163,所以米堆的體積為14考點:圓錐的性質(zhì)與圓錐的體積公式10、A【解析】

求得圓心到直線的距離,然后和圓的半徑比較大小,從而判定兩者位置關(guān)系,得到答案.【詳解】由題意,可得圓心到直線的距離為,所以直線與圓相交.故選:A.【點睛】本題主要考查了直線與圓的位置關(guān)系判定,其中解答中熟記直線與圓的位置關(guān)系的判定方法是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、10.【解析】

由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.【詳解】因為長方體的體積為120,所以,因為為的中點,所以,由長方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【點睛】本題蘊含“整體和局部”的對立統(tǒng)一規(guī)律.在幾何體面積或體積的計算問題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補”的方法解題.12、【解析】

利用等比中項可求出,再由可求出公比.【詳解】因為,,所以,,解得.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了計算能力,屬于基礎題.13、1【解析】應從丙種型號的產(chǎn)品中抽取件,故答案為1.點睛:在分層抽樣的過程中,為了保證每個個體被抽到的可能性是相同的,這就要求各層所抽取的個體數(shù)與該層所包含的個體數(shù)之比等于樣本容量與總體的個體數(shù)之比,即ni∶Ni=n∶N.14、或1【解析】

由點到直線的距離公式進行解答,即可求出實數(shù)a的值.【詳解】點(1,a)到直線x﹣y+1=0的距離是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴實數(shù)a的值為﹣1或1.故答案為:﹣1或1.【點睛】本題考查了點到直線的距離公式的應用問題,解題時應熟記點到直線的距離公式,是基礎題.15、17【解析】

根據(jù)所給的通項公式,代入求得,并由代入求得.即可求得的值.【詳解】數(shù)列的前n項和,則,而,,所以,則,故答案為:.【點睛】本題考查了數(shù)列前n項和通項公式的應用,遞推法求數(shù)列的項,屬于基礎題.16、②【解析】

③①可由課本推論知正確;②可舉反例;④可進行證明.【詳解】命題①平行于同一直線的兩條直線互相平行,由課本推論知是正確的;②垂直于同一平面的兩個平面互相平行,是錯誤的,例如正方體的上底面,前面和右側(cè)面,是互相垂直的關(guān)系;③根據(jù)課本推論知結(jié)論正確;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心這一結(jié)論是正確的;作出B在底面的射影O,連結(jié)AO,DO,則,同理,,進而得到O為三角形的垂心.

故答案為②【點睛】這個題目考查了命題真假的判斷,一般這類題目可以通過課本的性質(zhì)或者結(jié)論進行判斷;也可以通過舉反例來解決這個問題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)依題意可得、,再根據(jù),計算可得;(2)設存在實數(shù),使得,由因為,所以存在實數(shù),使,再根據(jù)向量相等的充要條件得到方程組,解得即可;【詳解】解:(1)因為D是線段AB上靠近B的一個三等分點,所以.因為E是線段AC上靠近A的一個四等分點,所以,所以.因為,所以,則.又,.所以.(2)因為G是線段BC上一點,所以存在實數(shù),使得,則因為,所以存在實數(shù),使,即,整理得解得,故.【點睛】本題考查平面向量的線性運算及平面向量共線定理的應用,屬于中檔題.18、(Ⅰ)(Ⅱ)10【解析】

解:(I)依題意得,即.當n≥2時,;當所以.(II)由(I)得,故=.因此,使得<成立的m必須滿足,故滿足要求的最小正整數(shù)m為10.19、(1)(2)見解析【解析】

(1)由題意利用二次函數(shù)的性質(zhì),求得函數(shù)的最大值.(2)不等式即(x﹣1)(x﹣a)<1,分類討論求得它的解集.【詳解】(1)設1<x,∵函數(shù)y=x(3﹣2x)2,故當x時,函數(shù)取得最大值為.(2)關(guān)于x的不等式x2﹣(a+1)x+a<1,即(x﹣1)(x﹣a)<1.當a=1時,不等式即(x﹣1)2<1,不等式無解;當a>1時,不等式的解集為{x|1<x<a};當a<1時,不等式的解集為{x|a<x<1}.綜上可得,當a=1時,不等式的解集為?,當a>1時,不等式的解集為{x|1<x<a},當a<1時,不等式的解集為{x|a<x<1}.【點睛】本題主要考查二次函數(shù)的性質(zhì),求二次函數(shù)的最值,一元二次不等式的解集,體現(xiàn)了分類討論的數(shù)學思想,屬于基礎題.20、(1),(2)時,【解析】

(1)設,有題知,得到,再計算矩形的面積,解不等式即可.(2)首先將花壇的面積化簡為,再利用基本不等式的性質(zhì)即可求出面積的最小值.【詳解】(1)設,.因為四邊形為矩形,所以.即:,解得:.所以,.所以,,解得或.因為,所以或.所以的長度范圍是.(2)因為.當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論