湖南省澧縣聯考2023-2024學年中考數學五模試卷含解析_第1頁
湖南省澧縣聯考2023-2024學年中考數學五模試卷含解析_第2頁
湖南省澧縣聯考2023-2024學年中考數學五模試卷含解析_第3頁
湖南省澧縣聯考2023-2024學年中考數學五模試卷含解析_第4頁
湖南省澧縣聯考2023-2024學年中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省澧縣聯考2023-2024學年中考數學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣2.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數y=kx圖象上,則k的值是()A. B. C. D.3.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b24.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數為()A.54° B.64° C.74° D.26°5.實數a在數軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定6.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.7.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=48.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.9.4的平方根是()A.16 B.2 C.±2 D.±10.如圖,A、B、C三點在正方形網格線的交點處,若將△ABC繞著點A逆時針旋轉得到△AC′B′,則tanB′的值為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數式可表示為尺,根據題意列方程為.12.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發(fā),沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.13.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______14.如圖,正方形ABCD的邊長為3,點E,F分別在邊BCCD上,BE=CF=1,小球P從點E出發(fā)沿直線向點F運動,完成第1次與邊的碰撞,每當碰到正方形的邊時反彈,反彈時反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經過的路程為__.15.________.16.如圖,△ABC三邊的中線AD,BE,CF的公共點G,若,則圖中陰影部分面積是.17.如圖所示,矩形ABCD的頂點D在反比例函數(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.三、解答題(共7小題,滿分69分)18.(10分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).19.(5分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m.當半圓D與數軸相切時,m=.半圓D與數軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.20.(8分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點A(﹣2,3),點B(6,n).(1)求該反比例函數和一次函數的解析式;(2)求△AOB的面積;(3)若M(x1,y1),N(x2,y2)是反比例函數y=(m≠0)的圖象上的兩點,且x1<x2,y1<y2,指出點M、N各位于哪個象限.21.(10分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數式表示第n個等式:an==(n為正整數);求a1+a2+a3+a4+…+a100的值.22.(10分)為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?23.(12分)如圖,在平面直角坐標系中,二次函數y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.24.(14分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:找出一元二次方程的系數a,b及c的值,利用根與系數的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數的關系2、B【解析】

根據矩形的性質得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據軸對稱的性質得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據勾股定理即可得到結論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質,勾股定理,熟練掌握折疊的性質是解題的關鍵.3、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D4、B【解析】

根據菱形的性質以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數.【詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【點睛】本題考查了菱形的性質和全等三角形的判定和性質,注意掌握菱形對邊平行以及對角線相互垂直的性質.5、C【解析】

根據數軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質及絕對值的代數意義化簡,去括號合并即可得到結果.【詳解】解:根據數軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質與化簡,以及實數與數軸,熟練掌握運算法則是解本題的關鍵.6、A【解析】分析:根據中心對稱的定義,結合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項正確;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤;故選:A.點睛:本題考查了中心對稱圖形的特點,屬于基礎題,判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.7、D【解析】

由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.8、B【解析】

根據軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.10、D【解析】

過C點作CD⊥AB,垂足為D,根據旋轉性質可知,∠B′=∠B,把求tanB′的問題,轉化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據旋轉性質可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉的性質,旋轉后對應角相等;三角函數的定義及三角函數值的求法.二、填空題(共7小題,每小題3分,滿分21分)11、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數式可表示為(x+1)尺,根據題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.12、2.4cm【解析】分析:根據圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數圖象,勾股定理,銳角三角函數等知識,解答本題的關鍵是根據圖形得到AC、BC的長度,此題難度一般.13、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.14、AB,【解析】

根據已知中的點E,F的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點的位置.再由勾股定理就可以求出小球第5次碰撞所經過路程的總長度.【詳解】根據已知中的點E,F的位置,可知入射角的正切值為,第一次碰撞點為F,在反射的過程中,根據入射角等于反射角及平行關系的三角形的相似可得,第二次碰撞點為G,在AB上,且AG=AB,第三次碰撞點為H,在AD上,且AH=AD,第四次碰撞點為M,在DC上,且DM=DC,第五次碰撞點為N,在AB上,且BN=AB,第六次回到E點,BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經過的路程為:++++=,故答案為AB,.【點睛】本題考查了正方形與軸對稱的性質,解題的關鍵是熟練的掌握正方形與軸對稱的性質.15、1【解析】

先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【詳解】解:原式=2×=1.故答案為1.【點睛】本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.16、4【解析】試題分析:由中線性質,可得AG=2GD,則,∴陰影部分的面積為4;其實圖中各個單獨小三角形面積都相等本題雖然超綱,但學生容易蒙對的.考點:中線的性質.17、-1【解析】

先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據△BCE的面積是6,得出BC×OE=1,最后根據AB∥OE,得出,即BC?EO=AB?CO,求得ab的值即可.【詳解】設D(a,b),則CO=-a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數y=(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC?EO=AB?CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案為-1.【點睛】本題主要考查了反比例函數系數k的幾何意義,矩形的性質以及平行線分線段成比例定理的綜合應用,能很好地考核學生分析問題,解決問題的能力.解題的關鍵是將△BCE的面積與點D的坐標聯系在一起,體現了數形結合的思想方法.三、解答題(共7小題,滿分69分)18、C點到地面AD的距離為:(2+2)m.【解析】

直接構造直角三角形,再利用銳角三角函數關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由題意可得:BF∥AD,則∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°?BC=∴C點到地面AD的距離為:【點睛】考查解直角三角形,熟練掌握銳角三角函數是解題的關鍵.19、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據題意由勾股定理即可解答(2)①根據題意可知半圓D與數軸相切時,只有一個公共點,和當O、A、B三點在數軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據題意如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【詳解】(1)當半圓與數軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數軸相切時,只有一個公共點,此時m=,當O、A、B三點在數軸上時,m=7+4=11,∴半圓D與數軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【點睛】此題此題考勾股定理,切線的性質,等邊三角形的判定和性質,三角形的內心和外心,解題關鍵在于作輔助線20、(1)反比例函數的解析式為y=﹣;一次函數的解析式為y=﹣x+2;(2)8;(3)點M、N在第二象限,或點M、N在第四象限.【解析】

(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,∴反比例函數的解析式為y=﹣;把點B(6,n)代入,可得n=﹣1,∴B(6,﹣1).把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,解得,∴一次函數的解析式為y=﹣x+2;(2)∵y=﹣x+2,令y=0,則x=4,∴C(4,0),即OC=4,∴△AOB的面積=×4×(3+1)=8;(3)∵反比例函數y=﹣的圖象位于二、四象限,∴在每個象限內,y隨x的增大而增大,∵x1<x2,y1<y2,∴M,N在相同的象限,∴點M、N在第二象限,或點M、N在第四象限.【點睛】本題考查了反比例函數與一次函數的交點問題,求三角形的面積,求函數的解析式,正確掌握反比例函數的性質是解題的關鍵.21、(1)(2)(3)【解析】

(1)(2)觀察知,找等號后面的式子規(guī)律是關鍵:分子不變,為1;分母是兩個連續(xù)奇數的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規(guī)律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.22、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.【解析】

詳解:(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因為a是整數,所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購買A型公交車6輛,B型公交車4輛;②購買A型公交車7輛,B型公交車3輛;③購買A型公交車8輛,B型公交車2輛.(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【點睛】此題考查二元一次方程組和一元一次不等式組的應用,注意理解題意,找出題目蘊含的數量關系,列出方程組或不等式組解決問題.23、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據二次函數的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論