2025屆江蘇省無錫市宜興和橋二中學九年級數(shù)學第一學期期末考試模擬試題含解析_第1頁
2025屆江蘇省無錫市宜興和橋二中學九年級數(shù)學第一學期期末考試模擬試題含解析_第2頁
2025屆江蘇省無錫市宜興和橋二中學九年級數(shù)學第一學期期末考試模擬試題含解析_第3頁
2025屆江蘇省無錫市宜興和橋二中學九年級數(shù)學第一學期期末考試模擬試題含解析_第4頁
2025屆江蘇省無錫市宜興和橋二中學九年級數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省無錫市宜興和橋二中學九年級數(shù)學第一學期期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.某農(nóng)科院對甲、乙兩種甜玉米各用10塊相同條件的試驗田進行試驗,得到兩個品種每畝產(chǎn)量的兩組數(shù)據(jù),其方差分別為,,則()A.甲比乙的產(chǎn)量穩(wěn)定 B.乙比甲的產(chǎn)量穩(wěn)定C.甲、乙的產(chǎn)量一樣穩(wěn)定 D.無法確定哪一品種的產(chǎn)量更穩(wěn)定2.如圖,在中,是直徑,點是上一點,點是弧的中點,于點,過點的切線交的延長線于點,連接,分別交,于點.連接,關于下列結論:①;②;③點是的外心,其中正確結論是()A.①② B.①③ C.②③ D.①②③3.菱形的兩條對角線長分別為60cm和80cm,那么邊長是()A.60cm B.50cm C.40cm D.80cm4.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.5.如圖,在矩形ABCD中,點E是邊BC的中點,AE⊥BD,垂足為F,則sin∠BDE的值是()A. B. C. D.6.反比例函數(shù)圖象上的兩點為,且,則下列表達式成立的是()A. B. C. D.不能確定7.為了測量某沙漠地區(qū)的溫度變化情況,從某時刻開始記錄了12個小時的溫度,記時間為(單位:)溫度為(單位:).當時,與的函數(shù)關系是,則時該地區(qū)的最高溫度是()A. B. C. D.8.如圖,PA,PB分別與⊙O相切于A、B兩點.直線EF切⊙O于C點,分別交PA、PB于E、F,且PA=1.則△PEF的周長為()A.1 B.15 C.20 D.259.如圖,直線a∥b∥c,直線m、n與這三條平行線分別交于點A、B、C和點D、E、F.若AB=3,BC=5,DF=12,則DE的值為()A. B.4 C. D.10.已知如圖:為估計池塘的寬度,在池塘的一側取一點,再分別取、的中點、,測得的長度為米,則池塘的寬的長為()A.米 B.米 C.米 D.米11.已知一扇形的圓心角為,半徑為,則以此扇形為側面的圓錐的底面圓的周長為()A. B. C. D.12.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.二、填空題(每題4分,共24分)13.如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關系y=﹣5x2+20x,在飛行過程中,當小球的行高度為15m時,則飛行時間是_____.14.拋物線與y軸的交點做標為__________.15.如圖,在中,,,以為直角邊、為直角頂點作等腰直角三角形,則______.16.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.17.如圖所示是由若干個完全相同的小正方體搭成的幾何體的主視圖和俯視圖,則這個幾何體最少是由________個正方體搭成的。18.計算:=______.三、解答題(共78分)19.(8分)如圖,在中,,垂足為平分,交于點,交于點.(1)若,求的長;(2)過點作的垂線,垂足為,連接,試判斷四邊形的形狀,并說明原因.20.(8分)某校九年級學生參加了中考體育考試.為了了解該校九年級(1)班同學的中考體育成績情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制出以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:分組分數(shù)段(分)頻數(shù)A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值為;(2)該班學生中考體育成績的中位數(shù)落在組;(在A、B、C、D、E中選出正確答案填在橫線上)(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.21.(8分)計算:|1﹣|+.22.(10分)解方程:x2﹣2x﹣2=1.23.(10分)如圖,AB是的直徑,點C、D在上,且AD平分,過點D作AC的垂線,與AC的延長線相交于E,與AB的延長線相交于點F,G為AB的下半圓弧的中點,DG交AB于H,連接DB、GB.證明EF是的切線;求證:;已知圓的半徑,,求GH的長.24.(10分)光明中學以“賞中華詩詞、尋文化基因、品生活之美”為基本宗旨舉辦首屆《詩詞大會》,九年級2班的馬小梅晉級總決賽,比賽過程分兩個環(huán)節(jié),參賽選手須在每個環(huán)節(jié)中各選擇一道題目.第一環(huán)節(jié):橫掃千軍、你說我猜、初級飛花令,(分別用)表示;第二環(huán)節(jié):出口成詩、飛花令、超級飛花令、詩詞接龍(分別用表示).(1)請用畫樹狀圖或列表的方法表示馬小梅參加總決賽抽取題目的所有可能結果;(2)求馬小梅參加總決賽抽取題目都是飛花令題目(初級飛花令、飛花令、超級飛花令)的概率.25.(12分)定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側有∠BAC和∠BDC,此時∠BAC=∠BDC.(1)請在圖1中再找出一對這樣的角來:=.(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.(3)在第(2)題的條件下,若此時AB=6,BD=8,求BC的長.26.在學習概率的課堂上,老師提出的問題:只有一張電影票,小麗和小芳想通過抽取撲克牌的游戲來決定誰去看電影,請你設計一個對小麗和小芳都公平的方案.甲同學的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.(1)甲同學的方案公平嗎?請用列表或畫樹狀圖的方法說明;(2)乙同學將甲同學的方案修改為只用2、3、5、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說明理由.

參考答案一、選擇題(每題4分,共48分)1、B【分析】由,,可得到<,根據(jù)方差的意義得到乙的波動小,比較穩(wěn)定.【詳解】∵,,

∴<,

∴乙比甲的產(chǎn)量穩(wěn)定.

故選:B.【點睛】本題考查了方差的意義:方差反映一組數(shù)據(jù)在其平均數(shù)左右的波動大小,方差越大,波動就越大,越不穩(wěn)定,方差越小,波動越小,越穩(wěn)定.2、C【分析】由于與不一定相等,根據(jù)圓周角定理可知①錯誤;連接OD,利用切線的性質(zhì),可得出∠GPD=∠GDP,利用等角對等邊可得出GP=GD,可知②正確;先由垂徑定理得到A為的中點,再由C為的中點,得到,根據(jù)等弧所對的圓周角相等可得出∠CAP=∠ACP,利用等角對等邊可得出AP=CP,又AB為直徑得到∠ACQ為直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P為直角三角形ACQ斜邊上的中點,即為直角三角形ACQ的外心,可知③正確;【詳解】∵在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,∴=≠,∴∠BAD≠∠ABC,故①錯誤;連接OD,則OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90,∠EPA+∠EAP=∠EAP+∠GPD=90,∴∠GPD=∠GDP;∴GP=GD,故②正確;∵弦CF⊥AB于點E,∴A為的中點,即,又∵C為的中點,∴,∴,∴∠CAP=∠ACP,∴AP=CP.∵AB為圓O的直徑,∴∠ACQ=90,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P為Rt△ACQ斜邊AQ的中點,∴P為Rt△ACQ的外心,故③正確;故選C.【點睛】此題是圓的綜合題,其中涉及到切線的性質(zhì),圓周角定理,垂徑定理,圓心角、弧、弦的關系定理,相似三角形的判定與性質(zhì),以及三角形的外接圓與圓心,平行線的判定,熟練掌握性質(zhì)及定理是解決本題的關鍵.3、B【分析】根據(jù)菱形的對角線互相垂直平分求出OA、OB的長,再利用勾股定理列式求出邊長AB,然后根據(jù)菱形的周長公式列式進行計算即可得解.【詳解】解:如圖,∵菱形的兩條對角線的長是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的對角線AC⊥BD,∴AB==50cm,∴這個菱形的邊長是50cm.故選B.【點睛】本題考查了菱形的性質(zhì),勾股定理的應用,主要利用了菱形的對角線互相垂直平分的性質(zhì).4、A【詳解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【點睛】本題考查1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì),綜合性較強,掌握相關性質(zhì)定理正確推理論證是解題關鍵.5、C【分析】由矩形的性質(zhì)可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性質(zhì)可得AE=DE,由相似三角形的性質(zhì)可得AF=2EF,由勾股定理可求DF的長,即可求sin∠BDE的值.【詳解】∵四邊形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵點E是邊BC的中點,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故選C.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,解直角三角形的運用,熟練運用相似三角形的判定和性質(zhì)是本題的關鍵.6、D【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征得到,,然后分類討論:0<<得到;當<0<得到<;當<<0得到.【詳解】∵反比例函數(shù)圖象上的兩點為,,∴,∴,,當0<<,;當<0<,<;當<<0,;故選D.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征,掌握反比例函數(shù)圖象上點的坐標特征是解題的關鍵.7、D【分析】利用配方法求最值.【詳解】解:∵a=-1<0∴當t=5時,y有最大值為36故選:D【點睛】本題考查配方法求最值,掌握配方法的方法正確計算是本題的解題關鍵.8、C【分析】由切線長定理知,AE=CE,F(xiàn)B=CF,PA=PB=1,然后根據(jù)△PEF的周長公式即可求出其結果.【詳解】解:∵PA、PB分別與⊙O相切于點A、B,⊙O的切線EF分別交PA、PB于點E、F,切點C在弧AB上,∴AE=CE,F(xiàn)B=CF,PA=PB=4,∴△PEF的周長=PE+EF+PF=PA+PB=2.故選:C.【點睛】本題主要考查了切線長定理的應用,解此題的關鍵是求出△PEF的周長=PA+PB.9、C【分析】由,利用平行線分線段成比例可得DE與EF之比,再根據(jù)DF=12,可得答案.【詳解】,,,,,,故選C.【點睛】本題考查了平行線分線段成比例,牢記平行線分線段成比例定理及推論是解題的關鍵.10、C【分析】根據(jù)三角形中位線定理可得DE=BC,代入數(shù)據(jù)可得答案.【詳解】解:∵線段AB,AC的中點為D,E,

∴DE=BC,

∵DE=20米,

∴BC=40米,

故選:C.【點睛】此題主要考查了三角形中位線定理,關鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半.11、A【分析】利用弧長公式計算出扇形的弧長,以此扇形為側面的圓錐的底面圓的周長即是扇形的弧長.【詳解】解:扇形的弧長=,以此扇形為側面的圓錐的底面圓的周長為.故選:A.【點睛】本題考查了弧長的計算:.12、A【解析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質(zhì)得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.二、填空題(每題4分,共24分)13、1s或3s【解析】根據(jù)題意可以得到15=﹣5x2+20x,然后求出x的值,即可解答本題.【詳解】∵y=﹣5x2+20x,∴當y=15時,15=﹣5x2+20x,得x1=1,x2=3,故答案為1s或3s.【點睛】本題考查二次函數(shù)的應用、一元二次方程的應用,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)和一元二次方程的知識解答.14、(0,9)【分析】令x=0,求出y的值,然后寫出交點坐標即可.【詳解】解:x=0時,y=-9,

所以,拋物線與y軸的交點坐標為(0,-9).

故正確答案為:(0,-9).【點睛】本題考查二次函數(shù)圖象上點的坐標特征,解題關鍵是熟練掌握二次函數(shù)圖象與坐標軸的交點的求解方法.15、1【分析】由于AD=AB,∠CAD=90°,則可將△ABD繞點A逆時針旋轉(zhuǎn)90°得△ABE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAE=90°,AC=AE,BE=CD,于是可判斷△ACE為等腰直角三角形,則∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理計算出BE=1,從而得到CD=1.【詳解】解:∵△ADB為等腰直角三角形,∴AD=AB,∠BAD=90°,將△ACD繞點A順時針旋轉(zhuǎn)90°得△AEB,如圖,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE為等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案為1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),以及勾股定理等知識.旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.解決本題的關鍵的利用旋轉(zhuǎn)得到直角三角形CBE.16、2.【分析】把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為2.【點睛】本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.17、【分析】易得這個幾何體共有3層,由俯視圖可得第一層立方體的個數(shù),由主視圖可得第二層、第三層立方體最少的個數(shù),相加即可.【詳解】結合主視圖和俯視圖可知,第一層、第二層最少各層最少1個,第三層一定有3個,∴組成這個幾何體的小正方體的個數(shù)最少是1個,故答案為:1.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.18、【分析】直接利用平面向量的加減運算法則求解即可求得,注意去括號時符號的變化.【詳解】解:==故答案為:.【點睛】此題考查了平面向量的運算.此題難度不大,注意掌握運算法則是解此題的關鍵.三、解答題(共78分)19、(1)CE=2;(2)菱形,理由見解析.【分析】(1)根據(jù)題意易求得∠ACD=∠CAF=∠BAF=30°,可得AE=CE,然后利用30°角的三角函數(shù)可求得CD的長、DE與AE的關系,進一步可得CE與CD的關系,進而可得結果;(2)根據(jù)角平分線的性質(zhì)可得CF=GF,根據(jù)HL可證Rt△ACF≌Rt△AGF,從而得∠AFC=∠AFG,由平行線的性質(zhì)和等量代換可得∠CEF=∠CFE,可得CE=CF,進而得CE=FG,根據(jù)一組對邊平行且相等可得四邊形CEGF是平行四邊形,進一步即得結論.【詳解】解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ACD=30°,∵AC=6,∴,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴∠ACD=∠CAF,,∴CE=AE=2DE,∴CE=2;(2)四邊形CEGF是菱形.證明:∵FG⊥AB,F(xiàn)C⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF與Rt△AGF中,∵AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,F(xiàn)G⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∵CE∥FG,∴四邊形CEGF是平行四邊形,∵CE=CF,∴平行四邊形CEGF是菱形.【點睛】本題考查了直角三角形的性質(zhì)、角平分線的性質(zhì)、銳角三角函數(shù)、菱形的判定和直角三角形全等的判定和性質(zhì)等知識,屬于??碱}型,熟練掌握上述基本知識是解題的關鍵.20、(1)18;(2)D組;(3)圖表見解析,【分析】(1)利用C分數(shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案為:18;(2)∵全班學生人數(shù)有50人,∴第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分數(shù)段,∴落在D段故答案為:D;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6種等情況數(shù),∴恰好選到一男一女的概率是==.【點睛】此題主要考查了列表法求概率以及扇形統(tǒng)計圖的應用,根據(jù)題意利用列表法得出所有情況是解題關鍵.21、1.【分析】根據(jù)根式、絕對值、指數(shù)的運算,以及特殊角的三角函數(shù)值,即可求得.【詳解】|1﹣|+(﹣cos60°)2﹣﹣(2+3)0=﹣1+4﹣+3﹣1=1【點睛】本題考查根式、絕對值、指數(shù)的運算,以及特殊角的三角函數(shù)值,屬基礎題.22、x1=1+,x2=1﹣.【解析】試題分析:把常數(shù)項2移項后,應該在左右兩邊同時加上一次項系數(shù)﹣2的一半的平方.試題解析:x2﹣2x﹣2=1移項,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,開方,得x﹣1=±.解得x1=1+,x2=1﹣.考點:配方法解一元二次方程23、(1)詳見解析;(1)詳見解析;(3).【解析】(1)由題意可證OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切線;(1)由同弧所對的圓周角相等,可得∠DAB=∠DGB,由余角的性質(zhì)可得∠DGB=∠BDF;(3)由題意可得∠BOG=90°,根據(jù)勾股定理可求GH的長.【詳解】解:(1)證明:連接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切線(1)∵AB是⊙O的直徑,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切線,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)連接OG,∵G是半圓弧中點,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH==.【點睛】本題考查了切線的判定和性質(zhì),角平分線的性質(zhì),勾股定理,圓周角定理等知識,熟練運用切線的判定和性質(zhì)解決問題是本題的關鍵.24、(1)詳見解析;(2)【分析】(1)根據(jù)題意畫樹狀圖寫出所有可能的結果即可;(2)找到抽取題目都是飛花令題目的情況數(shù),再除以總的情況數(shù)即可得出概率.【詳解】解:(1)畫樹狀圖如下共有12種可能的結果:T1S1,T1S2,T1S3,T1S1,T2S1,T2S2,T2S3,T2S1,T3S1,T3S2,T3S3,T3S1.(2)馬小梅參加總決賽抽取題目都是飛花令題目的有T3S2,T3S3兩種情況,由(1)知總共有12種情況,所以所求概率為.【點睛】本題考查概率的計算,熟練掌握樹狀圖法或列表法是解題的關鍵.25、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四邊形ACEF為正方形,理由見解析;(3)1【分析】(1)根據(jù)題意給出的性質(zhì)即可得出一組角相等;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論