河南省許昌市2025年高三第二次適應(yīng)性(模擬)檢測試題數(shù)學試題含解析_第1頁
河南省許昌市2025年高三第二次適應(yīng)性(模擬)檢測試題數(shù)學試題含解析_第2頁
河南省許昌市2025年高三第二次適應(yīng)性(模擬)檢測試題數(shù)學試題含解析_第3頁
河南省許昌市2025年高三第二次適應(yīng)性(模擬)檢測試題數(shù)學試題含解析_第4頁
河南省許昌市2025年高三第二次適應(yīng)性(模擬)檢測試題數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省許昌市2025年高三第二次適應(yīng)性(模擬)檢測試題數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.2.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.13.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件4.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.5.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-36.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.7.設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,,則8.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間9.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)10.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.11.設(shè),是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.12.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個二、填空題:本題共4小題,每小題5分,共20分。13.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示,估算月經(jīng)濟損失的平均數(shù)為,中位數(shù)為n,則_________.14.已知實數(shù)a,b,c滿足,則的最小值是______.15.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個零點,則的取值范圍是__________.16.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.18.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.19.(12分)在創(chuàng)建“全國文明衛(wèi)生城”過程中,運城市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計結(jié)果如表所示:.組別頻數(shù)(1)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求;(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應(yīng)的概率為:贈送話費的金額(單位:元)概率現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學期望.附:參考數(shù)據(jù)與公式:,若,則,,20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.21.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.22.(10分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得①,當,由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,

當,若為增函數(shù),則①,

當,若為增函數(shù),必有在上恒成立,

變形可得:,

又由,可得在上單調(diào)遞減,則,

若在上恒成立,則有②,

若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③

聯(lián)立①②③可得:.

故選:D.本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).2.A【解析】

設(shè)點,則點,,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點,則點,,,,當時,取最小值,最小值為.故選:A.本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎(chǔ)題.3.C【解析】

利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計算能力,屬于基礎(chǔ)題.4.D【解析】

根據(jù)拋物線的定義,結(jié)合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設(shè),則,故,此時,即.則直線的斜率.故選:D.本題考查了拋物線的定義,直線斜率公式,屬于中檔題.5.B【解析】

根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學生對這些知識的理解掌握水平.6.B【解析】

由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應(yīng)填?故選:.本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.7.C【解析】

根據(jù)空間中直線與平面、平面與平面位置關(guān)系相關(guān)定理依次判斷各個選項可得結(jié)果.【詳解】對于,當為內(nèi)與垂直的直線時,不滿足,錯誤;對于,設(shè),則當為內(nèi)與平行的直線時,,但,錯誤;對于,由,知:,又,,正確;對于,設(shè),則當為內(nèi)與平行的直線時,,錯誤.故選:.本題考查立體幾何中線面關(guān)系、面面關(guān)系有關(guān)命題的辨析,考查學生對于平行與垂直相關(guān)定理的掌握情況,屬于基礎(chǔ)題.8.D【解析】

可判斷函數(shù)為奇函數(shù),先討論當且時的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題9.C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.10.C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C本題考查三角函數(shù)的周期與頻率,考查理解分析能力.11.C【解析】

利用線線、線面、面面相應(yīng)的判定與性質(zhì)來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.12.B【解析】

根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.360【解析】

先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.14.【解析】

先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.15.【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值.(2)當給出函數(shù)值求自變量的值時,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.16.【解析】

利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);.;(2)【解析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關(guān)系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設(shè),則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.本題考查通過遞推關(guān)系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.18.(1);(2)【解析】

(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,,求出,當時求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時時,,時,,故存在使得且當時,當時,所以當時,當時,所以當時,取得極小值,也是最小值,故由于,所以,.本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學計算能力,屬于中檔題.19.(1)(2)詳見解析【解析】

由題意,根據(jù)平均數(shù)公式求得,再根據(jù),參照數(shù)據(jù)求解.由題意得,獲贈話費的可能取值為,求得相應(yīng)的概率,列出分布列求期望.【詳解】由題意得綜上,由題意得,獲贈話費的可能取值為,,的分布列為:本題主要考查正態(tài)分布和離散型隨機變量的分布列及期望,還考查了運算求解的能力,屬于中檔題.20.(1)證明見解析(2)【解析】

(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點,則,(或補角)是異面直線與所成的角.設(shè)為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設(shè),由,易知點的坐標分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.本題考查空間點、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于中檔題.21.(1);(2).【解析】

(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論