10.1.2事件的關(guān)系和運(yùn)算課件高一下學(xué)期數(shù)學(xué)人教A版_第1頁(yè)
10.1.2事件的關(guān)系和運(yùn)算課件高一下學(xué)期數(shù)學(xué)人教A版_第2頁(yè)
10.1.2事件的關(guān)系和運(yùn)算課件高一下學(xué)期數(shù)學(xué)人教A版_第3頁(yè)
10.1.2事件的關(guān)系和運(yùn)算課件高一下學(xué)期數(shù)學(xué)人教A版_第4頁(yè)
10.1.2事件的關(guān)系和運(yùn)算課件高一下學(xué)期數(shù)學(xué)人教A版_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版A2019-必修第二冊(cè)高一數(shù)學(xué)組第九章統(tǒng)計(jì)10.1隨機(jī)事件與概率10.1.2事件的關(guān)系和運(yùn)算學(xué)習(xí)目標(biāo)新課引入探究新知識(shí)1、理解并掌握事件的關(guān)系和運(yùn)算;2、通過(guò)事件之間的運(yùn)算,理解互斥事件和對(duì)立事件的概念;3、提升數(shù)學(xué)抽象素養(yǎng),能將事件的運(yùn)算關(guān)系靈活運(yùn)用到實(shí)際事件中新課引入復(fù)習(xí)回顧

在上節(jié)課中,我們用集合表示事件,那么我們能否類比集合的研究思路,研究各個(gè)事件的關(guān)系和運(yùn)算呢?集合的研究思路集合的定義→集合的關(guān)系→集合的基本運(yùn)算↓包含,相等關(guān)系↓交、并、補(bǔ)事件的關(guān)系事件的運(yùn)算↑↑新課引入探究新知識(shí)從前面的學(xué)習(xí)中可以看到,我們?cè)谝粋€(gè)隨機(jī)試驗(yàn)中可以定義很多隨機(jī)事件.這些事件有的簡(jiǎn)單,有的復(fù)雜.我們希望從簡(jiǎn)單事件的概率推算出復(fù)雜事件的概率,所以需要研究事件之間的關(guān)系和運(yùn)算.新課引入探究新知識(shí)探究:在擲骰子試驗(yàn)中,觀察骰子朝上面的點(diǎn)數(shù),可以定義許多隨機(jī)事件,如:Ci=“點(diǎn)數(shù)為i”,i=1,2,3,4,5,6;D1=“點(diǎn)數(shù)不大于3”;D2=“點(diǎn)數(shù)大于3”;E1=“點(diǎn)數(shù)為1或2”;E2=“點(diǎn)數(shù)為2或3”;F=“點(diǎn)數(shù)為偶數(shù)”;G=“點(diǎn)數(shù)為奇數(shù)”;……

你還能否寫(xiě)出這個(gè)試驗(yàn)中其他的一些事件嗎?請(qǐng)用集合的形式表示這些事件,借助集合與集合的關(guān)系與運(yùn)算,你能發(fā)現(xiàn)這些事件之間的聯(lián)系嗎?新課引入探究新知識(shí)

追問(wèn):你還能舉出其他具有上述關(guān)系的事件嗎?我們把上述事件用集合的形式寫(xiě)出來(lái)得到下列集合:

新課引入探究新知識(shí)

Ω一、事件的關(guān)系A(chǔ)BΩ新課引入探究新知識(shí)D1={1,2,3},E1={1,2}和E2={2,3}.事件E1和事件E2至少有一個(gè)發(fā)生,相當(dāng)于事件D1發(fā)生.集合表示:這時(shí)我們稱事件D1為事件E1和事件E2的并事件.

一般地,若事件A和事件B至少有一個(gè)發(fā)生,這樣的一個(gè)事件中的樣本點(diǎn)或者在事件A中,或者在事件B中,我們就稱這個(gè)事件為事件A與事件B的并事件(或和事件),記作(如右圖所示:綠色區(qū)域和黃色區(qū)域表示這個(gè)并事件)ABΩ二.并事件(和事件)問(wèn)題1

用集合的形式表示事件D1=“點(diǎn)數(shù)不大于3”、事件E1=“點(diǎn)數(shù)為1或2”和事件E2=“點(diǎn)數(shù)為2或3”,借助集合與集合的關(guān)系和運(yùn)算,這些事件之間的聯(lián)系如何?新課引入探究新知識(shí)C1={2},E1={1,2},E2={2,3}.事件E1和事件E2同時(shí)發(fā)生,相當(dāng)于事件C2發(fā)生,集合表示:這時(shí)我們稱事件C2為事件E1和事件E2的交事件.三.交事件(積事件)

一般地,若事件A與事件B同時(shí)發(fā)生,這樣的一個(gè)事件中的樣本點(diǎn)既在事件A中,也在事件B中,我們就稱這樣的一個(gè)事件為事件A與事件B的交事件(或積事件),記作(如右圖所示的藍(lán)色區(qū)域)ABΩ問(wèn)題2

用集合的形式表示事件C2=“點(diǎn)數(shù)為2”,事件E1=“點(diǎn)數(shù)為1或2”和事件E2=“點(diǎn)數(shù)為2或3”借助集合與集合的關(guān)系和運(yùn)算,這些事件之間的聯(lián)系如何?新課引入探究新知識(shí)C3={3},C4={4}事件C3與事件C4不可能同時(shí)發(fā)生.集合表示:這時(shí)我們稱事件C3與事件C4互斥.四.互斥事件

一般地,若事件A與事件B不能同時(shí)發(fā)生,也就是說(shuō)A∩B是一個(gè)不可能事件,即A∩B=

,我們就稱事件A與事件B互斥(或互不相容).(如右圖所示)ABΩ(1)事件A與事件B在任何一次

試驗(yàn)中不會(huì)同時(shí)發(fā)生。(2)兩事件同時(shí)發(fā)生的概率為0。注:事件A與事件B互斥時(shí)問(wèn)題3

用集合的形式表示事件C3=“點(diǎn)數(shù)為3”和事件C4=“點(diǎn)數(shù)為4”,借助集合與集合的關(guān)系和運(yùn)算,這些事件之間的聯(lián)系是什么?新課引入探究新知識(shí)F={2,4,6},G={1,3,5}在任何一次試驗(yàn)中,事件F與事件G兩者只能發(fā)生其中之一,而且也必然發(fā)生其中之一.集合表示:F∩G=

且F∪G=Ω稱事件F與事件G互為對(duì)立事件

一般地,若事件A和事件B在任何一次試驗(yàn)中有且僅有一個(gè)發(fā)生,即A∪B=Ω,且A∩B=

,我們就稱事件A與事件B互為對(duì)立.

事件A的對(duì)立事件記作.(如右圖所示)對(duì)立事件AΩ追問(wèn)

具有這種關(guān)系的事件還有那些?D1與D2.(1)事件A與事件B在任何一次試驗(yàn)中有且僅有一個(gè)發(fā)生。注:事件A與事件B對(duì)立時(shí)(2)A

B為不可能事件,

A

B為必然事件(3)對(duì)立事件一定是互斥事件,但互斥事件不一定是對(duì)立事件。問(wèn)題4用集合的形式表示事件F=“點(diǎn)數(shù)為偶數(shù)”和事件G=“點(diǎn)數(shù)為奇數(shù)”,借助集合與集合的關(guān)系和運(yùn)算,這兩個(gè)事件之間的聯(lián)系如何?新課引入探究新知識(shí)①互斥事件可以是兩個(gè)或兩個(gè)以上事件的關(guān)系,而對(duì)立事件只針對(duì)兩個(gè)事件而言.②從定義上看,兩個(gè)互斥事件有可能都不發(fā)生,也可能有一個(gè)發(fā)生,就是不可能同時(shí)發(fā)生;對(duì)立事件除了要求這兩個(gè)事件不同時(shí)發(fā)生外,還要求這二者之間必須要有一個(gè)發(fā)生.因此,對(duì)立事件是互斥事件,是互斥事件的特殊情況,但互斥事件不一定是對(duì)立事件.問(wèn)題5“對(duì)立事件”、“互斥事件”都是指不會(huì)同時(shí)發(fā)生的事件,那么這兩種事件之間的關(guān)系有什么異同呢?新課引入探究新知識(shí)歸納小結(jié)綜上所述,事件的關(guān)系或運(yùn)算的含義,以及相應(yīng)的符號(hào)表示如下:事件的關(guān)系或運(yùn)算含義符號(hào)表示包含A發(fā)生導(dǎo)致B發(fā)生A?B并事件(和事件)A與B至少一個(gè)發(fā)生A∪B或A+B交事件(積事件)A與B同時(shí)發(fā)生A∩B或AB互斥(互不相容)A與B不能同時(shí)發(fā)生A∩B=

互為對(duì)立A與B有且僅有一個(gè)發(fā)生A∩B=

,A∪B=Ω

類似地,我們可以定義多個(gè)事件的和事件以及積事件,例如,對(duì)于三個(gè)事件A,B,C,A∪B∪C(或A+B+C)發(fā)生當(dāng)且僅當(dāng)A,B,C中至少一個(gè)發(fā)生,A∩B∩C(或ABC)發(fā)生當(dāng)且僅當(dāng)A,B,C同時(shí)發(fā)生,等等.新課引入探究新知識(shí)例5

如圖示,

由甲、乙兩個(gè)元件組成一個(gè)并聯(lián)電路,每個(gè)元件可能正常或失效.設(shè)事件A=“甲元件正?!?,B=“乙元件正?!?(1)寫(xiě)出表示兩個(gè)元件工作狀態(tài)的樣本空間;(2)用集合的形式表示事件A,B以及它們的對(duì)立事件;(3)用集合的形式表示事件A∪B和事件

,并說(shuō)明它們的含義及關(guān)系.乙甲

新課引入探究新知識(shí)例5

如圖示,

由甲、乙兩個(gè)元件組成一個(gè)并聯(lián)電路,每個(gè)元件可能正?;蚴?設(shè)事件A=“甲元件正?!?,B=“乙元件正?!?(1)寫(xiě)出表示兩個(gè)元件工作狀態(tài)的樣本空間;(2)用集合的形式表示事件A,B以及它們的對(duì)立事件;(3)用集合的形式表示事件A∪B和事件

,并說(shuō)明它們的含義及關(guān)系.乙甲∴A∪B和

互為對(duì)立事件.

(3)A∪B={(0,1),(1,0),(1,1)},={(0,0)};A∪B表示電路工作正常,

表示電路工作不正常.新課引入探究新知識(shí)例6

一個(gè)袋子中有大小和質(zhì)地相同的4個(gè)球,其中有2個(gè)紅色球(標(biāo)號(hào)為1和2),2個(gè)綠色球(標(biāo)號(hào)為3和4),從袋中不放回地依次隨機(jī)摸出2個(gè)球.設(shè)事件R1=“第一次摸到紅球”,R2=“第二次摸到紅球”,R=“兩次都摸到紅球”,G=“兩次都摸到綠球”,M=“兩個(gè)球顏色相同”,N=“兩個(gè)球顏色不同”.(1)用集合的形式分別寫(xiě)出試驗(yàn)的樣本空間以及上述各事件;(2)事件R與R1,R與G,M與N之間各有什么關(guān)系?(3)事件R與事件G的并事件與事件M有什么關(guān)系?

事件R1與事件R2的交事件與事件R有什么關(guān)系?解:(1)所有的試驗(yàn)結(jié)果如圖所示.用數(shù)組(x1,x2)表示可能的結(jié)果,x1是第一次摸到的球的標(biāo)號(hào),x2是第二次摸到的球的標(biāo)號(hào),則試驗(yàn)的樣本空間為Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}.R1={(1,2),(1,3),(1,4),(2,1),(2,2),(2,3)},R2={(2,1),(3,1),(4,1),(1,2),(3,2),(4,2)},R={(1,2),(2,1)},G={(3,4),(4,3)},M={(1,2),(2,1),(3,4),(4,3)},N={(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)}.新課引入探究新知識(shí)例6

一個(gè)袋子中有大小和質(zhì)地相同的4個(gè)球,其中有2個(gè)紅色球(標(biāo)號(hào)為1和2),2個(gè)綠色球(標(biāo)號(hào)為3和4),從袋中不放回地依次隨機(jī)摸出2個(gè)球.設(shè)事件R1=“第一次摸到紅球”,R2=“第二次摸到紅球”,R=“兩次都摸到紅球”,G=“兩次都摸到綠球”,M=“兩個(gè)球顏色相同”,N=“兩個(gè)球顏色不同”.(2)事件R與R1,R與G,M與N之間各有什么關(guān)系?(3)事件R與事件G的并事件與事件M有什么關(guān)系?

事件R1與事件R2的交事件與事件R有什么關(guān)系?解:(2)∵R?R1,∴R1包含事件R;∵R∩G=

,∴事件R與事件G互斥;∵M(jìn)∪N=Ω,M∩N=

,∴事件M與事件N互為對(duì)立事件.(3)∵R∪G=M,∴事件M是事件R與事件G的并事件.∵R1∩R2=R,∴事件R是事件R1與事件R2的交事件.新課引入探究新知識(shí)[練習(xí)1]同時(shí)擲兩枚硬幣,向上面都是正面的事件為A,向上面至少有一枚是正面為事件B,則有(

)A.A?BB.A?BC.A=BD.A<B[練習(xí)2]現(xiàn)有語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理和化學(xué)共5本書(shū),從中任取1本,記取到語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)書(shū)分別為事件A、B、C、D、E,則事件“取出的是理科書(shū)”可記為_(kāi)_______.[練習(xí)3]從2,4,6,8,10中任取1個(gè)數(shù),事件A={2,4,8},事件B={4,6,8},則事件A與事件B的交事件是(

)A.{2,4}

B.{4,6}C.{4,8}

D.{2,8}AB∪D∪EC新課引入探究新知識(shí)本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論