![北京市牛欄山一中2025屆高二上數(shù)學(xué)期末考試試題含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M08/2E/22/wKhkGWcMGQKAJESMAAHMTg15sWE723.jpg)
![北京市牛欄山一中2025屆高二上數(shù)學(xué)期末考試試題含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M08/2E/22/wKhkGWcMGQKAJESMAAHMTg15sWE7232.jpg)
![北京市牛欄山一中2025屆高二上數(shù)學(xué)期末考試試題含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M08/2E/22/wKhkGWcMGQKAJESMAAHMTg15sWE7233.jpg)
![北京市牛欄山一中2025屆高二上數(shù)學(xué)期末考試試題含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M08/2E/22/wKhkGWcMGQKAJESMAAHMTg15sWE7234.jpg)
![北京市牛欄山一中2025屆高二上數(shù)學(xué)期末考試試題含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M08/2E/22/wKhkGWcMGQKAJESMAAHMTg15sWE7235.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市牛欄山一中2025屆高二上數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,,,,若該三角形有兩個(gè)解,則范圍是()A. B.C. D.2.在正方體中,,則()A. B.C. D.3.已知點(diǎn)是橢圓上的任意一點(diǎn),過(guò)點(diǎn)作圓:的切線,設(shè)其中一個(gè)切點(diǎn)為,則的取值范圍為()A. B.C. D.4.下列問(wèn)題中是古典概型的是A.種下一粒楊樹種子,求其能長(zhǎng)成大樹的概率B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點(diǎn)的概率C.在區(qū)間[1,4]上任取一數(shù),求這個(gè)數(shù)大于1.5概率D.同時(shí)擲兩枚質(zhì)地均勻的骰子,求向上的點(diǎn)數(shù)之和是5的概率5.橢圓的短軸長(zhǎng)為()A.8 B.2C.4 D.6.在數(shù)列中,若,,則()A.16 B.32C.64 D.1287.若雙曲線經(jīng)過(guò)點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.8.函數(shù)f(x)=-1+lnx,對(duì)?x0,f(x)≥0成立,則實(shí)數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)9.已知、分別為雙曲線的左、右焦點(diǎn),且,點(diǎn)P為雙曲線右支一點(diǎn),為的內(nèi)心,若成立,給出下列結(jié)論:①點(diǎn)的橫坐標(biāo)為定值a;②離心率;③;④當(dāng)軸時(shí),上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④10.在中,角所對(duì)的邊分別為,,,則外接圓的面積是()A. B.C. D.11.已知直線與垂直,則為()A.2 B.C.-2 D.12.已知數(shù)列滿足:,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面直角坐標(biāo)系內(nèi)動(dòng)點(diǎn)M()與定點(diǎn)F(4,0)的距離和M到定直線的距離之比是常數(shù),則動(dòng)點(diǎn)M的軌跡是___________14.若函數(shù)在區(qū)間上的最大值是,則__________15.已知數(shù)列的前項(xiàng)和為,且,若點(diǎn)在直線上,則______;______.16.已知直線與直線垂直,則__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在△ABC中,角A,B,C所對(duì)的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長(zhǎng)線上一點(diǎn),且AD⊥AC,求線段BD的長(zhǎng)18.(12分)已知橢圓經(jīng)過(guò)點(diǎn),橢圓E的一個(gè)焦點(diǎn)為(1)求橢圓E的方程;(2)若直線l過(guò)點(diǎn)且與橢圓E交于A,B兩點(diǎn).求的最大值19.(12分)已知對(duì)于,函數(shù)有意義,關(guān)于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.20.(12分)已知橢圓的左頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn)分別為,且的面積為,橢圓上的動(dòng)點(diǎn)到的最小距離是(1)求橢圓的方程;(2)過(guò)橢圓的左頂點(diǎn)作兩條互相垂直的直線交橢圓于不同的兩點(diǎn)(異于點(diǎn)).①證明:動(dòng)直線恒過(guò)軸上一定點(diǎn);②設(shè)線段中點(diǎn)為,坐標(biāo)原點(diǎn)為,求的面積的最大值.21.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,當(dāng)以為始邊,為終邊的角時(shí),.(1)求的方程(2)過(guò)點(diǎn)的直線交于兩點(diǎn),以為直徑的圓平行于軸的直線相切于點(diǎn),線段交于點(diǎn),求的面積與的面積的比值22.(10分)已知甲射擊的命中率為0.7.乙射擊的命中率為0.8,甲乙兩人的射擊互相獨(dú)立.求:(1)甲乙兩人同時(shí)擊中目標(biāo)的概率;(2)甲乙兩人中至少有一個(gè)人擊中目標(biāo)的概率;(3)甲乙兩人中恰有一人擊中目標(biāo)的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)三角形解得個(gè)數(shù)可直接構(gòu)造不等式求得結(jié)果.【詳解】三角形有兩個(gè)解,,即.故選:D.2、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進(jìn)行求解即可.【詳解】因?yàn)?,而,所以有,故選:A3、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因?yàn)椋?,即,故選:B4、D【解析】A、B兩項(xiàng)中的基本事件的發(fā)生不是等可能的;C項(xiàng)中基本事件的個(gè)數(shù)是無(wú)限多個(gè);D項(xiàng)中基本事件的發(fā)生是等可能的,且是有限個(gè).故選D【考點(diǎn)】古典概型的判斷5、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長(zhǎng).【詳解】由,可得,所以短軸長(zhǎng)為.故選:C.6、C【解析】根據(jù)題意,為等比數(shù)列,用基本量求解即可.【詳解】因?yàn)椋适鞘醉?xiàng)為2,公比為2的等比數(shù)列,故.故選:C7、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過(guò)的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因?yàn)殡p曲線經(jīng)過(guò)點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A8、B【解析】由導(dǎo)數(shù)求得的最小值,由最小值非負(fù)可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時(shí),,遞減,時(shí),,遞增,所以時(shí),取得極小值也是最小值,由題意,解得故選:B9、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對(duì)選項(xiàng)逐個(gè)分析判斷即可【詳解】對(duì)于①,設(shè)內(nèi)切圓與的切點(diǎn)分別為,則由切線長(zhǎng)定理可得,因?yàn)椋?,所以,所以點(diǎn)的坐標(biāo)為,所以點(diǎn)的橫坐標(biāo)為定值a,所以①正確,對(duì)于②,因?yàn)椋?,化?jiǎn)得,即,解得,因?yàn)?,所以,所以②正確,對(duì)于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因?yàn)?,,所以,所以,所以③正確,對(duì)于④,當(dāng)軸時(shí),可得,此時(shí),所以,所以④錯(cuò)誤,故選:C10、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因?yàn)?,所以,由余弦定理得,,所以,設(shè)外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.11、A【解析】利用一般式中直線垂直的系數(shù)關(guān)系列式求解.【詳解】因?yàn)橹本€與垂直,故選:A.12、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項(xiàng),推導(dǎo)出數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點(diǎn)的軌跡就是集合,由此得.將上式兩邊平方,并化簡(jiǎn),得所以,動(dòng)點(diǎn)的軌跡是長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)分別為12、的橢圓故答案為:14、0【解析】由函數(shù),又由,則,根據(jù)二次函數(shù)的性質(zhì),即可求解函數(shù)的最大值,得到答案.【詳解】由函數(shù),因?yàn)椋?,?dāng)時(shí),則,所以.【點(diǎn)睛】本題主要考查了余弦函數(shù)的性質(zhì),以及二次函數(shù)的圖象與性質(zhì),其中解答中根據(jù)余弦函數(shù),轉(zhuǎn)化為關(guān)于的二次函數(shù),利用二次函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.15、①.;②.【解析】根據(jù)等差數(shù)列的定義,結(jié)合等差數(shù)列前項(xiàng)和公式、裂項(xiàng)相消法進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)在直線上,所以,所以數(shù)列是以,公差為的等差數(shù)列,所以;因?yàn)?,所以,于是,故答案為:?6、-3【解析】因?yàn)橹本€與直線垂直,所以考點(diǎn):本題考查兩直線垂直的充要條件點(diǎn)評(píng):若兩直線方程分別為,則他們垂直的充要條件是三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用正弦定理化簡(jiǎn)已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來(lái)求得.【小問(wèn)1詳解】,由正弦定理得,因?yàn)?,所以?【小問(wèn)2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,18、(1);(2).【解析】(1)利用代入法,結(jié)合焦點(diǎn)的坐標(biāo)、橢圓中的關(guān)系進(jìn)行求解即可;(2)根據(jù)直線l是否存在斜率分類討論,結(jié)合一元二次方程根的判別式、根與系數(shù)關(guān)系、弦長(zhǎng)公式、基本不等式進(jìn)行求解即可.【小問(wèn)1詳解】依題意:,解得,,∴橢圓E的方程為;【小問(wèn)2詳解】當(dāng)直線l的斜率存在時(shí),設(shè),,由得由得.由,得當(dāng)且僅當(dāng),即時(shí)等號(hào)成立當(dāng)直線l的斜率不存在時(shí),,∴的最大值為19、(1)(2)【解析】(1)由與的真假相反,得出為真命題,將定義域問(wèn)題轉(zhuǎn)化為不等式的恒成立問(wèn)題,討論參數(shù)的取值,得出答案;(2)由必要不充分條件的定義得出,討論的取值結(jié)合包含關(guān)系得出的范圍.【詳解】解:(1)因?yàn)闉榧倜},所以為真命題,所以對(duì)恒成立.當(dāng)時(shí),不符合題意;當(dāng)時(shí),則有,則.綜上,k的取值范圍為.(2)由,得.由(1)知,當(dāng)為真命題時(shí),則令令因?yàn)閜是q的必要不充分條件,所以當(dāng)時(shí),,,解得當(dāng)時(shí),,符合題意;當(dāng)時(shí),,符合題意;所以的取值范圍是【點(diǎn)睛】本題主要考查了不等式的恒成立問(wèn)題以及根據(jù)必要不充分條件求參數(shù)范圍,屬于中檔題.20、(1)(2)①證明見(jiàn)解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點(diǎn)和的坐標(biāo),求直線方程判斷定點(diǎn)即可;②根據(jù)題意得,代入求最值即可.【小問(wèn)1詳解】根據(jù)題意得,,,又,三個(gè)式子聯(lián)立解得,,,所以橢圓的方程為:【小問(wèn)2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因?yàn)?,所以設(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時(shí),,所以直線的方程為:,整理得,此時(shí)直線過(guò)定點(diǎn);當(dāng)時(shí),直線的方程為:,此時(shí)直線過(guò)定點(diǎn),故直線恒過(guò)定點(diǎn).②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的面積的最大值為:.【點(diǎn)睛】解決直線與橢圓綜合問(wèn)題時(shí),要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個(gè)條件,明確確定直線、橢圓的條件;(2)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題21、(1)(2)【解析】(1)過(guò)點(diǎn)作,垂足為,過(guò)點(diǎn)作,垂足為,根據(jù)拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設(shè)直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據(jù),求得,設(shè),得到,進(jìn)而求得,因?yàn)闉榈闹悬c(diǎn),求得,即可求解.【小問(wèn)1詳解】解:由題意,拋物線,可得其準(zhǔn)線方程,如圖所示,過(guò)點(diǎn)作,垂足為,過(guò)點(diǎn)作,垂足為,因?yàn)闀r(shí),,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問(wèn)2詳解】解:由拋物線,可得,設(shè),因?yàn)橹本€的直線過(guò)點(diǎn),設(shè)直線的方程為聯(lián)立方程組,整理得,可得,則,因?yàn)闉榈闹悬c(diǎn),所以,由拋物線的定義得,設(shè)圓與直線相切于點(diǎn),因?yàn)榻挥邳c(diǎn),所以且,所以,即,解得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年糧食加工設(shè)備合作協(xié)議書
- 2025年防殺病毒軟件合作協(xié)議書
- 外研版新教材七年級(jí)上冊(cè)英語(yǔ)重點(diǎn)單詞短語(yǔ)默寫紙
- 2025年胃腸解痙藥合作協(xié)議書
- 2025年事業(yè)單位臨時(shí)工勞動(dòng)合同樣本(三篇)
- 2025年中國(guó)房屋租賃合同(2篇)
- 2025年產(chǎn)品外協(xié)加工合同范文(2篇)
- 2025年互聯(lián)網(wǎng)辦稅軟件服務(wù)協(xié)議范文(2篇)
- 2025年交通事故死亡賠償協(xié)議范文(2篇)
- 山西省2024七年級(jí)道德與法治上冊(cè)第四單元追求美好人生第十三課實(shí)現(xiàn)人生價(jià)值情境基礎(chǔ)小練新人教版
- HR六大板塊+三支柱體系
- 慢性病患者門診身份管理方案
- 2025年高考英語(yǔ)一輪復(fù)習(xí)講義(新高考)第2部分語(yǔ)法第23講狀語(yǔ)從句(練習(xí))(學(xué)生版+解析)
- 連鑄工職業(yè)技能大賽考試題庫(kù)-上(單選、多選題)
- NB/T 11459-2023煤礦井下直流電法勘探規(guī)程
- 2024年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(新高考Ⅱ)含答案
- 十七個(gè)崗位安全操作規(guī)程手冊(cè)
- 爆花(2023年陜西中考語(yǔ)文試卷記敘文閱讀題及答案)
- 自主簽到培訓(xùn)課件-早安!幼兒園
- 2024-2030年中國(guó)大宗商品行業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與投資前景研究報(bào)告
- 一年級(jí)二年級(jí)奧數(shù)暑期培優(yōu)題庫(kù)
評(píng)論
0/150
提交評(píng)論