數(shù)學:《生活中的優(yōu)化問題舉例》課件(人教A版選修)_第1頁
數(shù)學:《生活中的優(yōu)化問題舉例》課件(人教A版選修)_第2頁
數(shù)學:《生活中的優(yōu)化問題舉例》課件(人教A版選修)_第3頁
數(shù)學:《生活中的優(yōu)化問題舉例》課件(人教A版選修)_第4頁
數(shù)學:《生活中的優(yōu)化問題舉例》課件(人教A版選修)_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、導數(shù)法,不等式法,例1 學校或班級舉行活動,通常需要張貼海報進行宣傳現(xiàn)讓你設計一張如圖所示的豎向張貼的海報,要求版心面積為,上、下兩邊各空2dm左、右兩邊各空1dm.如何設計海報的尺寸,才能使四周空白的面積最小,x,y,2,答案,答案(續(xù),例2.飲料瓶大小對飲料公司利潤的 影響 (1)你是否注意過,市場上等量的小包裝的物品一般 比大包裝的要貴些? (2)是不是飲料瓶越大,飲料公司的利潤越大? 背景知識:某制造商制造并出售球型瓶裝的某種飲料。 瓶子的制造成本是 分,其中 r 是瓶 子的半徑,單位是厘米.已知每出售1 ml 的飲料,制造商可獲利 0.2 分,且制造商能 制作的瓶子的最大半徑為 6c

2、m. 問題()瓶子的半徑多大時,能使每瓶飲料的利潤最大? ()瓶子的半徑多大時,每瓶的利潤最小,解:由于瓶子的半徑為r,所以每瓶飲料的利潤是,令,當,當半徑r時,f (r)0它表示 f(r) 單調(diào)遞增, 即半徑越大,利潤越高; 當半徑r時,f (r)0 它表示 f(r) 單調(diào)遞減, 即半徑越大,利潤越低,1.半徑為cm 時,利潤最小,這時,表示此種瓶內(nèi)飲料的利潤還不夠瓶子的成本, 此時利潤是負值,半徑為cm時,利潤最大,注:如果不用導數(shù)工具,直接從函數(shù)的圖象上觀察,你有什么發(fā)現(xiàn)?(圖見課本第40頁,利用導數(shù)解決優(yōu)化問題的基本思路,優(yōu)化問題,用函數(shù)表示的數(shù)學問題,用導數(shù)解決數(shù)學問題,優(yōu)化問題的答案,練習,1,已知:某商品生產(chǎn)成本與產(chǎn)量q的函數(shù)關(guān)系式為,價格p與產(chǎn)量q的函數(shù)關(guān)系式為,求產(chǎn)量 q 為何值時,利潤 L 最大,某賓館有個房間供游客居住,當每個房間每天的定價為元時,房間會全部住滿;房間的單價每增加元,就會有一個房間空閑如果游客居住房間,賓館每天每間需花費元的各種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論