小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)大匯總_第1頁
小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)大匯總_第2頁
小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)大匯總_第3頁
小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)大匯總_第4頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、.小學(xué)奧數(shù) 30 個(gè)知識(shí)點(diǎn)大匯總1和差倍問題2年齡問題的三個(gè)基本特征:3歸一問題4植樹問題5雞兔同籠問題6盈虧問題7牛吃草問題8周期循環(huán)與數(shù)表規(guī)律9平均數(shù)10抽屜原理11定義新運(yùn)算12數(shù)列求和13二進(jìn)制及其應(yīng)用14加法乘法原理和幾何計(jì)數(shù)15質(zhì)數(shù)與合數(shù)16約數(shù)與倍數(shù)17數(shù)的整除18余數(shù)及其應(yīng)用19余數(shù)、同余與周期20分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用21分?jǐn)?shù)大小的比較;.22分?jǐn)?shù)拆分23完全平方數(shù)24比和比例25綜合行程26工程問題27邏輯推理28幾何面積29立體圖形30時(shí)鐘問題快慢表問題;.1和差倍問題和差問題和倍問題差倍問題已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)公式適用范圍已知兩個(gè)數(shù)的和,差

2、,倍數(shù)關(guān)系公式 ( 和差 ) 2=較小數(shù)較小數(shù)差 =較大數(shù)小學(xué)奧數(shù)很簡單,就這 30 個(gè)知識(shí)點(diǎn)和較小數(shù) =較大數(shù) ( 和差 ) 2=較大數(shù)較大數(shù)差 =較小數(shù)和較大數(shù) =較小數(shù)和 ( 倍數(shù) 1)=小數(shù)小數(shù)倍數(shù) =大數(shù)和小數(shù) =大數(shù)差 ( 倍數(shù) -1)= 小數(shù)小數(shù)倍數(shù) =大數(shù)小數(shù)差 =大數(shù)關(guān)鍵問題求出同一條件下的和與差和與倍數(shù)差與倍數(shù)2年齡問題三個(gè)基本特征:兩個(gè)人的年齡差是不變的;兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;;.兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;3歸一問題基本特點(diǎn):問題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度” 等詞語來表示。關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一

3、量;4植樹問題基本類型在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹, 兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹基本公式棵數(shù) =段數(shù) 1棵距段數(shù) =總長棵數(shù) =段數(shù) 1棵距段數(shù) =總長棵數(shù) =段數(shù)棵距段數(shù) =總長關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系5雞兔同籠問題基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來;基本思路:假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去

4、出現(xiàn)的差。;.基本公式:把所有雞假設(shè)成兔子: 雞數(shù)(兔腳數(shù)總頭數(shù)總腳數(shù))(兔腳數(shù)雞腳數(shù))把所有兔子假設(shè)成雞: 兔數(shù)(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù))關(guān)鍵問題:找出總量的差與單位量的差。6盈虧問題基本概念:一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組, 又產(chǎn)生一種結(jié)果, 由于分組的標(biāo)準(zhǔn)不同, 造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭炕舅悸罚合葘煞N分配方案進(jìn)行比較, 分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化, 根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù), 然后根據(jù)題意求出對(duì)象的總量基本題型:一次有余數(shù),另一次不足;基本公式:總份數(shù)(余數(shù)不足數(shù))兩次每份數(shù)的差當(dāng)兩次都有

5、余數(shù);基本公式:總份數(shù)(較大余數(shù)一較小余數(shù)) 兩次每份數(shù)的差當(dāng)兩次都不足;基本公式:總份數(shù)(較大不足數(shù)一較小不足數(shù))兩次每份數(shù)的差基本特點(diǎn):對(duì)象總量和總的組數(shù)是不變的。;.關(guān)鍵問題:確定對(duì)象總量和總的組數(shù)。7牛吃草問題基本思路:假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差; 再找出造成這種差異的原因,即可確定草的生長速度和總草量。基本特點(diǎn):原草量和新草生長速度是不變的;關(guān)鍵問題:確定兩個(gè)不變的量?;竟剑荷L量 =(較長時(shí)間長時(shí)間牛頭數(shù)- 較短時(shí)間短時(shí)間牛頭數(shù))(長時(shí)間 - 短時(shí)間);總草量 =較長時(shí)間長時(shí)間牛頭數(shù)- 較長時(shí)間生長量;8周期循環(huán)與數(shù)表規(guī)律周期現(xiàn)象:

6、事物在運(yùn)動(dòng)變化的過程中, 某些特征有規(guī)律循環(huán)出現(xiàn)。周期:我們把連續(xù)兩次出現(xiàn)所經(jīng)過的時(shí)間叫周期。關(guān)鍵問題:確定循環(huán)周期。閏年:一年有 366 天;年份能被 4 整除;如果年份能被100 整除,則年份必須能被400 整除;平年:一年有 365 天。年份不能被 4 整除;如果年份能被100 整除,但不能被 400整除;9平均數(shù);.基本公式:平均數(shù) =總數(shù)量總份數(shù)總數(shù)量 =平均數(shù)總份數(shù)總份數(shù) =總數(shù)量平均數(shù)平均數(shù) =基準(zhǔn)數(shù)每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和總份數(shù)基本算法:求出總數(shù)量以及總份數(shù),利用基本公式進(jìn)行計(jì)算.基準(zhǔn)數(shù)法: 根據(jù)給出的數(shù)之間的關(guān)系, 確定一個(gè)基準(zhǔn)數(shù); 一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù)

7、; 以基準(zhǔn)數(shù)為標(biāo)準(zhǔn), 求所有給出數(shù)與基準(zhǔn)數(shù)的差; 再求出所有差的和; 再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和, 就是所求的平均數(shù), 具體關(guān)系見基本公式。10抽屜原理抽屜原則一:如果把(n+1)個(gè)物體放在n 個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2 個(gè)物體。例:把 4 個(gè)物體放在 3 個(gè)抽屜里,也就是把 4 分解成三個(gè)整數(shù)的和,那么就有以下四種情況: 4=4+0+04=3+1+04=2+2+0 4=2+1+1觀察上面四種放物體的方式, 我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn): 總有那么一個(gè)抽屜里有 2 個(gè)或多于 2 個(gè)物體,也就是說必有一個(gè)抽屜中至少放有 2 個(gè)物體。抽屜原則二:如果把n 個(gè)物體放

8、在 m個(gè)抽屜里,其中 nm,那么必有一個(gè)抽屜至少有:;. k=n/m+1 個(gè)物體:當(dāng) n 不能被 m整除時(shí)。k=n/m 個(gè)物體:當(dāng) n 能被 m整除時(shí)。理解知識(shí)點(diǎn): X 表示不超過 X 的最大整數(shù)。例4.351=4 ;0.321=0 ; 2.9999=2 ;關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。11定義新運(yùn)算基本概念:定義一種新的運(yùn)算符號(hào), 這個(gè)新的運(yùn)算符號(hào)包含有多種基本(混合)運(yùn)算。基本思路:嚴(yán)格按照新定義的運(yùn)算規(guī)則,把已知的數(shù)代入, 轉(zhuǎn)化為加減乘除的運(yùn)算,然后按照基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。關(guān)鍵問題:正確理解定義的運(yùn)算符號(hào)的意義。注意事項(xiàng):新的運(yùn)

9、算不一定符合運(yùn)算規(guī)律, 特別注意運(yùn)算順序。每個(gè)新定義的運(yùn)算符號(hào)只能在本題中使用。12數(shù)列求和等差數(shù)列:在一列數(shù)中, 任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列?;靖拍睿菏醉?xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1 表示;項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n 表示;公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d 表示;通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an 表示;數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn 表示;.基本思路:等差數(shù)列中涉及五個(gè)量: a1,an,d,n,sn,通項(xiàng)公式中涉及四個(gè)量, 如果己知其中三個(gè), 就可求出第四個(gè); 求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四

10、個(gè)?;竟剑和?xiàng)公式: an=a1+(n1) d;通項(xiàng)首項(xiàng)(項(xiàng)數(shù)一 1) 公差;數(shù)列和公式: sn, =(a1+an)n2 ;數(shù)列和(首項(xiàng)末項(xiàng))項(xiàng)數(shù)2;項(xiàng)數(shù)公式: n=(an+a1)d 1;項(xiàng)數(shù) =(末項(xiàng) - 首項(xiàng))公差 1;公差公式: d=(ana1)( n1);公差 =(末項(xiàng)首項(xiàng))(項(xiàng)數(shù)1);關(guān)鍵問題:確定已知量和未知量,確定使用的公式;13二進(jìn)制及其應(yīng)用十進(jìn)制:用 09 十個(gè)數(shù)字表示,逢 10 進(jìn) 1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的 2 表示 20,百位上的 2 表示 200。所以234=200+30+4=2102+310+4。=An10n-1+An-110n-2+An-21

11、0n-3+An-310n-4+An-410n-5+An-610n-7+A3102+A2101+A1100注意: N0=; N =N(其中 N是任意自然數(shù))二進(jìn)制:用 01 兩個(gè)數(shù)字表示,逢2 進(jìn) 1;不同數(shù)位上的數(shù)字表示不同的含義。;.( 2)=An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+A322+A221+A120注意: An 不是 0 就是 1。十進(jìn)制化成二進(jìn)制:根據(jù)二進(jìn)制滿2 進(jìn) 1 的特點(diǎn),用 2 連續(xù)去除這個(gè)數(shù), 直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。先找出不大于該數(shù)的2 的 n 次方,再求它們的差, 再找

12、不大于這個(gè)差的 2 的 n 次方,依此方法一直找到差為0,按照二進(jìn)制展開式特點(diǎn)即可寫出。14加法乘法原理和幾何計(jì)數(shù)加法原理 :如果完成一件任務(wù)有n 類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法 ,在第n 類方法中有 mn種不同方法,那么完成這件任務(wù)共有:m1+m2.+mn種不同的方法。關(guān)鍵問題:確定工作的分類方法?;咎卣鳎好恳环N方法都可完成任務(wù)。乘法原理: 如果完成一件任務(wù)需要分成 n 個(gè)步驟進(jìn)行,做第 1 步有m1種方法,不管第 1 步用哪一種方法,第 2 步總有 m2種方法 不管前面 n-1 步用哪種方法,第 n 步總有 mn種方法,那么完成這件任務(wù)共有: m1

13、m2. mn種不同的方法。關(guān)鍵問題:確定工作的完成步驟。;.基本特征:每一步只能完成任務(wù)的一部分。直線:一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。直線特點(diǎn):沒有端點(diǎn),沒有長度。線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。線段特點(diǎn):有兩個(gè)端點(diǎn),有長度。射線:把直線的一端無限延長。射線特點(diǎn):只有一個(gè)端點(diǎn);沒有長度。數(shù)線段規(guī)律:總數(shù)1+2+3+(點(diǎn)數(shù)一 1);數(shù)角規(guī)律 =1+2+3+(射線數(shù)一 1);數(shù)長方形規(guī)律:個(gè)數(shù)=長的線段數(shù)寬的線段數(shù):數(shù)長方形規(guī)律:個(gè)數(shù)=11+2 2+33+行數(shù)列數(shù)15質(zhì)數(shù)與合數(shù)質(zhì)數(shù):一個(gè)數(shù)除了 1 和它本身之外,沒有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。合數(shù):一

14、個(gè)數(shù)除了 1 和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。質(zhì)因數(shù):如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。分解質(zhì)因數(shù):把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中 a1、a2、a3an 都是合數(shù)N的質(zhì)因數(shù),且a1a2a3an。;.求約數(shù)個(gè)數(shù)的公式: P=(r1+1) (r2+1) (r3+1) (rn+1)互質(zhì)數(shù):如果兩個(gè)數(shù)的最大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。/a2a3an。16約數(shù)與倍數(shù)約數(shù)和倍數(shù):若整數(shù) a 能夠被 b 整除, a 叫做 b 的倍數(shù), b 就叫做 a

15、 的約數(shù)。公約數(shù):幾個(gè)數(shù)公有的約數(shù), 叫做這幾個(gè)數(shù)的公約數(shù); 其中最大的一個(gè),叫做這幾個(gè)數(shù)的最大公約數(shù)。最大公約數(shù)的性質(zhì):1、幾個(gè)數(shù)都除以它們的最大公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。2、幾個(gè)數(shù)的最大公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。3、幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的最大公約數(shù)的約數(shù)。4、幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的最大公約數(shù)等于這幾個(gè)數(shù)的最大公約數(shù)乘以m。例如: 12 的約數(shù)有 1、 2、3、4、6、12;18 的約數(shù)有: 1、 2、3、6、 9、18;那么 12 和 18 的公約數(shù)有: 1、 2、3、6;那么 12 和 18 最大的公約數(shù)是: 6,記作( 12,18)=6;求最大公約數(shù)基本方法:

16、1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。2、短除法:先找公有的約數(shù),然后相乘。;.3、輾轉(zhuǎn)相除法: 每一次都用除數(shù)和余數(shù)相除, 能夠整除的那個(gè)余數(shù),就是所求的最大公約數(shù)。公倍數(shù):幾個(gè)數(shù)公有的倍數(shù), 叫做這幾個(gè)數(shù)的公倍數(shù); 其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。12 的倍數(shù)有: 12、24、36、48 ;18 的倍數(shù)有: 18、36、54、72 ;那么 12 和 18 的公倍數(shù)有: 36、72、108 ;那么 12 和 18 最小的公倍數(shù)是36,記作 12 ,18=36 ;最小公倍數(shù)的性質(zhì):1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。2、兩個(gè)數(shù)最大公約數(shù)與最小公倍數(shù)的乘

17、積等于這兩個(gè)數(shù)的乘積。求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法17數(shù)的整除一、基本概念和符號(hào):1、整除:如果一個(gè)整數(shù)a,除以一個(gè)自然數(shù)b,得到一個(gè)整數(shù)商c,而且沒有余數(shù),那么叫做a 能被 b 整除或 b 能整除 a,記作 b|a 。2、常用符號(hào):整除符號(hào)“ | ”,不能整除符號(hào)“”;因?yàn)榉?hào)“”,所以的符號(hào)“”;二、整除判斷方法:1. 能被 2、5 整除:末位上的數(shù)字能被 2、5 整除。2. 能被 4、25 整除:末兩位的數(shù)字所組成的數(shù)能被 4、 25 整除。;.3. 能被 8、125 整除:末三位的數(shù)字所組成的數(shù)能被 8、125 整除。4. 能被 3、9 整除:各個(gè)

18、數(shù)位上數(shù)字的和能被3、9 整除。5. 能被 7 整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7 整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的2 倍后能被 7 整除。6. 能被 11 整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被 11 整除。奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被 11 整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被 11 整除。7. 能被 13 整除:末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被 13 整除。逐次去掉最后一位數(shù)字并減去末位數(shù)字的 9 倍后能被 13 整除。三、整除的性質(zhì):1. 如果 a、b 能被 c 整除,那

19、么( a+b)與( a-b )也能被 c 整除。2. 如果 a 能被 b 整除, c 是整數(shù),那么 a 乘以 c 也能被 b 整除。3. 如果 a 能被 b 整除, b 又能被 c 整除,那么 a 也能被 c 整除。4. 如果 a 能被 b、c 整除,那么 a 也能被 b 和 c 的最小公倍數(shù)整除。18余數(shù)及其應(yīng)用基本概念:對(duì)任意自然數(shù)a、b、q、r ,如果使得 ab=qr ,且;.0rb,那么 r 叫做 a 除以 b 的余數(shù), q 叫做 a 除以 b 的不完全商。余數(shù)的性質(zhì):余數(shù)小于除數(shù)。若 a、b 除以 c 的余數(shù)相同,則c|a-b或 c|b-a 。a 與 b 的和除以 c 的余數(shù)等于 a

20、 除以 c 的余數(shù)加上 b 除以 c 的余數(shù)的和除以 c 的余數(shù)。a 與 b 的積除以 c 的余數(shù)等于 a 除以 c 的余數(shù)與 b 除以 c 的余數(shù)的積除以 c 的余數(shù)。19余數(shù)、同余與周期一、同余的定義:若兩個(gè)整數(shù) a、b 除以 m的余數(shù)相同,則稱 a、b 對(duì)于模 m同余。已知三個(gè)整數(shù) a、b、m,如果 m|a-b ,就稱 a、b 對(duì)于模 m同余,記作 a b(modm),讀作 a 同余于 b 模 m。二、同余的性質(zhì):自身性: aa(modm);對(duì)稱性:若 ab(modm),則 ba(modm);傳遞性:若 ab(modm),bc(modm),則 ac(modm);和差性:若 ab(modm

21、),cd(modm),則 a+cb+d(modm),a-c b-d(modm);相乘性:若 ab(modm),cd(modm),則 acbd(modm);乘方性:若 ab(modm),則 anbn(modm);同倍性:若 ab(modm),整數(shù) c,則 acbc(modmc) ;;.三、關(guān)于乘方的預(yù)備知識(shí):若 A=ab,則 MA=Mab=( Ma)b若 B=c+d則 MB=Mc+d=McMd四、被 3、9、11 除后的余數(shù)特征:一個(gè)自然數(shù) M,n 表示 M的各個(gè)數(shù)位上數(shù)字的和,則Mn(mod9)或( mod3);一個(gè)自然數(shù) M,X 表示 M的各個(gè)奇數(shù)位上數(shù)字的和,Y 表示 M的各個(gè)偶數(shù)數(shù)位上數(shù)

22、字的和,則MY-X 或 M11- (X-Y)(mod11);五、費(fèi)爾馬小定理:如果p 是質(zhì)數(shù)(素?cái)?shù)), a 是自然數(shù),且 a 不能被 p 整除,則 ap-1 1(modp)。20分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用基本概念與性質(zhì):分?jǐn)?shù):把單位“ 1”平均分成幾份,表示這樣的一份或幾份的數(shù)。分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0 除外),分?jǐn)?shù)的大小不變。分?jǐn)?shù)單位:把單位“ 1”平均分成幾份,表示這樣一份的數(shù)。百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。常用方法:逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。轉(zhuǎn)化思維方法: 把一類應(yīng)

23、用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常;.見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系; 把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量) 下的分率轉(zhuǎn)化成同一條件下的分率。 常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。假設(shè)思維方法: 為了解題的方便, 可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。量不變思維方法: 在變化的各個(gè)量當(dāng)中, 總有一個(gè)量是不變的, 不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。 B、總量發(fā)生變化,但其中有的分量不變。 C、總量和分量都發(fā)生變化,但分量之間的差量不變化。替換思維方法:用一種量代替另

24、一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。 /rb ,那么 r 叫做 a 除以 b 的余數(shù), q 叫做 a 除以 b 的不完全商。21分?jǐn)?shù)大小的比較基本方法:通分分子法: 使所有分?jǐn)?shù)的分子相同, 根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。通分分母法: 使所有分?jǐn)?shù)的分母相同, 根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較?;鶞?zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。;.分子和分母大小比較法: 當(dāng)分子和分母的差一定時(shí), 分子或分母越大的分?jǐn)?shù)值越大。倍率比較法: 當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大

25、小, 除了運(yùn)用以上方法外, 可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。 (具體運(yùn)用見同倍率變化規(guī)律)轉(zhuǎn)化比較方法: 把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù) (求出分?jǐn)?shù)的值) 后進(jìn)行比較。倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1 進(jìn)行比較。大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0 比較。倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小?;鶞?zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。22分?jǐn)?shù)拆分一、將一個(gè)分?jǐn)?shù)單位分解成兩個(gè)分?jǐn)?shù)之和的公式:23完全平方數(shù)完全平方數(shù)特征:1. 末位數(shù)字只能是: 0、1、4、 5、6、9;反之不成立。2. 除以 3 余 0 或余 1;反之不成立。3. 除以 4 余 0

26、或余 1;反之不成立。4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。;.平方差公式: X2-Y2=(X-Y)( X+Y)222完全平方和公式:( X+Y) =X+2XY+Y完全平方差公式:( X-Y)2=X2-2XY+Y224比和比例比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。 比號(hào)前面的數(shù)叫比的前項(xiàng), 比號(hào)后面的數(shù)叫比的后項(xiàng)。比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。比例:表示兩個(gè)比相等的式子叫做比例。a:b=c

27、:d 或比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積( 交叉相乘 ) ,ad=bc。正比例:若 A 擴(kuò)大或縮小幾倍,B 也擴(kuò)大或縮小幾倍( AB的商不變時(shí)),則 A與 B成正比。反比例:若 A 擴(kuò)大或縮小幾倍,B 也縮小或擴(kuò)大幾倍( AB的積不變時(shí)),則 A與 B成反比。比例尺:圖上距離與實(shí)際距離的比叫做比例尺。按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。25綜合行程基本概念:行程問題是研究物體運(yùn)動(dòng)的, 它研究的是物體速度、 時(shí)間、路程三者之間的關(guān)系 .基本公式:路程 =速度時(shí)間;路程時(shí)間=速度;路程速度 =時(shí)間;.關(guān)鍵問題:確定運(yùn)動(dòng)過程中的位置和方向。相遇問題:速度和相遇時(shí)間=相遇路程(請

28、寫出其他公式)追及問題:追及時(shí)間路程差速度差(寫出其他公式)流水問題:順?biāo)谐?=(船速 +水速)順?biāo)畷r(shí)間逆水行程 =(船速 - 水速)逆水時(shí)間順?biāo)俣?=船速 +水速逆水速度 =船速 - 水速靜水速度 =(順?biāo)俣?+逆水速度) 2水速 =(順?biāo)俣?- 逆水速度) 2流水問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。過橋問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。主要方法:畫線段圖法基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。26工程問題基本公式:工作總量 =工作效率工作時(shí)間工作效率 =工作總量工作時(shí)間工作時(shí)間 =工作總量工作效率基本思路:假設(shè)工作總量為“ 1”(和總工作量無關(guān));假設(shè)一個(gè)方便的數(shù)為工作總量 (一般是它們完成工作總量所用時(shí)間;.的最小公倍數(shù)) ,利用上述三個(gè)基本關(guān)系, 可以簡單地表示出工作效率及工作時(shí)間 .關(guān)鍵問題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。經(jīng)驗(yàn)簡評(píng):合久必分,分久必合。27邏輯推理基本方法簡介:條件分析假設(shè)法: 假設(shè)可能情況中的一種成立, 然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況, 說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè) a 是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么 a 一定是奇數(shù)。條件分析列表法:當(dāng)題設(shè)條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論