加拿大數(shù)學(xué)10年級(jí)練習(xí)第四部分幾何_第1頁(yè)
加拿大數(shù)學(xué)10年級(jí)練習(xí)第四部分幾何_第2頁(yè)
加拿大數(shù)學(xué)10年級(jí)練習(xí)第四部分幾何_第3頁(yè)
加拿大數(shù)學(xué)10年級(jí)練習(xí)第四部分幾何_第4頁(yè)
加拿大數(shù)學(xué)10年級(jí)練習(xí)第四部分幾何_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、【精品文檔】如有侵權(quán),請(qǐng)聯(lián)系網(wǎng)站刪除,僅供學(xué)習(xí)與交流加拿大數(shù)學(xué)10年級(jí)練習(xí)第四部分幾何.精品文檔.1. Find the ratio of the perimeter of the larger rectangle to the perimeter of the smaller rectangle.2. Find the area of the triangle with A = 41, b = 5 ft, and c = 4 ft. Round your answer to two decimal places.· 6.56 ft2 · 10.00 ft2 ·

2、7.55 ft2 · 13.12 ft2 3. Find the area of kite ABCD if BD = 48 cm, AB = 25 cm, and BC = 26. The kite is not drawn to scale.· 289 cm2 · 70 cm2 · 816 cm2 · 408 cm2 4. The diameter of a basketball rim is 18 inches. A standard basketball has a circumference of 30 inches. About ho

3、w much room is there between the ball and the rim in a shot in which the ball goes in exactly in the center of the rim?· 4.2 in. · 8.45 in. · 4.78 in. · none of these 5. Find the area.· 718 square units · 545 square units · 534.5 square units · 701 square unit

4、s 6. Name the major arc and find its measure.· m = 275 · m = 170 · m = 85 · m = 275 7. Find the area of the regular polygon. Round your answer to the nearest tenth.· 40.0 in.2 · 220.5 in.2 · 67.6 in.2 · 110.2 in.2 8. Name the minor arc and find its measure.

5、83; m = 275 · m = 85 · m = 170 · m = 275 9. Find the area of ABC. The figure is not drawn to scale.· 26.06 cm2 · 28.00 cm2 · 22.73 cm2 · 24.95 cm2 10. Find the circumference of the circle. Use as an approximation of .· 2 cm · 11 cm · 5 cm · 6 cm

6、 11. If a dart hits the target at random, what it the probability that it will land in the unshaded region?12. Find the area of the circle. Use = 3.14 and round to the nearest hundredth.· 91.56 m2 · 16.96 m2 · 5.72 m2 · 22.89 m2 13. Find the area of a regular pentagon with side 6

7、 cm.· 76.6 cm2 · 61.9 cm2 · 45.2 cm2 · 123.9 cm2 14. Find the probability that an object falling randomly on the figure will land in the shaded area.· 0.32 · 0.36 · 0.5 · 0.26 15. Find the area.· 102.9 yd2 · 205.8 yd2 · 35.35 yd2 · 105.5 yd

8、2 16. Two concentric circles have radii of 14 cm and 24 cm. Find the probability to the nearest thousandth that a point chosen at random from the circles is located outside the smaller circle and inside the larger one.· 0.066 · 0.583 · 0.017 · 0.660 17. A slide that is inches by

9、inches is projected onto a screen that is 3 feet by 7 feet, filling the screen. What will be the ratio of the area of the slide to its image on the screen?· 1 : 112 · 1 : 2304 · 2 : 4205 · 1 : 12,544 18. Find the area of a regular octagon with perimeter 48 cm.· 188.1 cm2 

10、83; 190.5 cm2 · 347.6 cm2 · 173.8 cm2 19. Dorothy ran 6 times around a circular track that has a diameter of 47 m. Approximately how far did she run? Use = 3.14 and round your answer to the nearest meter.· 885 m · 1328 m · 443 m · 1734 m 20. Find the area.· 10.26 c

11、m2 · 61.56 cm2 1. Find the volume of the cylinder in terms of .· 24 in.3 · 48 in.3 · 56 in.3 · 288 in.3 2. Find the volume of the cylinder in terms of .· 287 in.3 · 275 in.2 · 275 in.3 · 287 in.2 3. A sphere has a volume of 288 ft3. Find the surface area

12、of the sphere.· 864 ft2 · 48 ft2 · 144 ft2 · 96 ft2 4. The volumes of two similar solids are 2197 m3 and 64 m3. The surface area of the larger one is 845 m2. What is the surface area of the smaller one?· 64 m2 · 320 m2 · 80 m2 · none of these 5. Use a net to f

13、ind the surface area of the prism.· 114 m2 · 240 m2 · 290 m2 · 145 m2 6. Find the surface area of a sphere that has a diameter of 4 cm.· 64 cm2 · cm3 · 4 cm2 · 16 cm2 7. Find the lateral area and the surface area of the cone. Use 3.14 for and round the answer

14、to the nearest hundredth. The diagram is not to scale.· lateral area: 733.33 ft2; surface area: 690.80 ft2 · lateral area: 6908.00 ft2; surface area: 1004.80 ft2 · lateral area: 690.80 ft2; surface area: 1004.80 ft2 · none of these 8. If the ratio of the radii of two spheres is 7

15、 : 2, what is the ratio of the surface areas of the two spheres?· 7 : 2 · 7r2 : 2r2 · 49 : 4 · 343 : 8 9. Use a net to find the surface area of the prism.· 465 m2 · 720 m2 · 918 m2 · 930 m2 10. Find the height of the cylinder to the nearest tenth of an inch.&#

16、183; 94.6 in. · 96.6 in. · 4.3 in. · 4.1 in. 11. Use formulas to find the lateral area and the surface area of the prism. Show your answer to the nearest hundredth.· 63.00 m2; 567.00 m2 · 36.00 m2; 1134.00 m2 · 479.22 m2; 533.22 m2 · 542.22 m2; 596.22 m2 12. Find t

17、he volume of the prism.· 942 m3 · 38 m3 · 945 m3 · 1890 m3 13. The volumes of two similar solids are 1331 m3 and 343 m3. The surface area of the larger one is 484 m2. What is the surface area of the smaller one?· 343 m2 · 1372 m2 · 196 m2 · none of these 14. F

18、ind the surface area of the sphere.· 648 m2 · 72 m2 · 324 m2 · 1296 m2 15. Find the volume of the prism.· 40.5 m3 · 162 m3 · 9 m3 · 81 m3 16. Find the surface area of the solid. Round to the nearest square foot.· 36 ft2 · 32 ft2 · 64 ft2 ·

19、68 ft2 17. Use formulas to find the surface area of the prism. Show your answer to the nearest hundredth.· 75.42 cm2 · 170.16 cm2 · 86.94 cm2 · 69.52 cm2 18. Which figure is a net for a cube?19. Cylinder A has radius 1 and height 4 and cylinder B has radius 2 and height 4. Find t

20、he ratio of the volumes of the two cylinders.· 1 : 4 · 5 : 6 · 1 : 2 · 1 : 1 20. Neil had a job helping a jeweler. He had the assignment of counting the faces, vertices, and edges on the emeralds. On the first emerald, Neil counted 9 faces and 16 edges. He quickly realized he did

21、n't have to count the vertices. How many vertices were there?· 10 vertices · 7 vertices · 8 vertices · 9 vertices 1. Find the value of x if AB = 20, BC = 12, and CD = 13. (not drawn to scale)· 18.8 · 16.5 · 13.4 · 14.9 2. Find the measure of each variable

22、if mA = 22 and m = 97. (not drawn to scale)· 53; 210 · 53; 105 · 75; 210 · 75; 105 3. In the plane of lines X and Y, what is the locus of points equidistant from lines X and Y?· line A · line D · line B · line C 4. A small messenger company can only deliver wi

23、thin a certain distance from the company. On the graph below, the circular region represents that part of the city where the company delivers, and the center of the circle represents the location of the company. Which equation represents the boundary for the region where the company delivers?·

24、(x + 3)2 + (y 1)2 = 49 · (x + 3)2 + (y 3)2 = 98 · (x + 1)2 + (y 3)2 = 98 · (x + 3)2 + (y 3)2 = 49 5. A low-watt radio station can be heard only within a certain distance from the station. On the graph below, the circular region represents that part of the city where the station can be

25、 heard, and the center of the circle represents the location of the station. Which equation represents the boundary for the region where the station can be heard?· (x 4)2 + (y 5)2 = 50 · (x + 5)2 + (y 5)2 = 59 · (x + 5)2 + (y + 4)2 = 25 · (x + 5)2 + (y 5)2 = 25 6. Find the center

26、 and radius of (x 8)2 + (y + 7)2 = 64.· (8, 7); 8 · (7, 8); 64 · (8, 7); 8 · (7, 8); 8 7. is tangent to circle O at B. How close to the circle is point A? (The diagram is not to scale.)· 3 · 4.5 · 6 · 7.5 8. Compare the quantity in Column A with the quantity i

27、n Column B.· The quantity in Column A is greater. · The quantity in Column B is greater. · The two quantities are equal. · The relationship cannot be determined from the information given. 9. Solve for x.· 21 · 56 · 22 · 7 10. Find the value of x.· 14.6 &

28、#183; 8.1 · 9.4 · 13.4 11. Write the standard equation for the circle with center (14, 48) that passes through (0, 0).· (x 14)2 + (y + 48)2 = 2500 · (x + 14)2 + (y 48)2 = 2500 · (x + 14)2 + (y 48)2 = 50 · (x 14)2 + (y + 48)2 = 50 12. Find the measure of BAC.· 30

29、76; · 150° · 120° · 60° 13. Find the value of x.· 79 · 39 · 99 · 159 14. In space, which description fits the locus of points 3 cm from ?· an open cylinder of diameter 6 cm · an open cylinder of radius 3 cm and two hemispheres of diameter 6 cm each · an open cylinder of radius 3 cm and height 6 cm · an open cylinder of diameter 6 cm and two spheres of radius 3 cm each 15. and are tangent to circle O and bisects BPA. If

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論