建筑環(huán)境與設(shè)備工程暖通畢業(yè)設(shè)計(jì)外文翻譯_第1頁(yè)
建筑環(huán)境與設(shè)備工程暖通畢業(yè)設(shè)計(jì)外文翻譯_第2頁(yè)
建筑環(huán)境與設(shè)備工程暖通畢業(yè)設(shè)計(jì)外文翻譯_第3頁(yè)
建筑環(huán)境與設(shè)備工程暖通畢業(yè)設(shè)計(jì)外文翻譯_第4頁(yè)
建筑環(huán)境與設(shè)備工程暖通畢業(yè)設(shè)計(jì)外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、南京工程學(xué)院 Nanjing Institute Of Technology畢業(yè)設(shè)計(jì)英文資料翻譯The Translation Of The English Material Of Graduation Design 學(xué)生姓名: 學(xué) 號(hào) : 000000000 Name: Number: 000000000 班 級(jí): K暖通091 Class: K-Nuantong 091 所在學(xué)院: 康尼學(xué)院 College: Kangni College 專(zhuān) 業(yè): 建筑環(huán)境與設(shè)備工程 Profession: Building Environment and Equipment Engineering 指導(dǎo)

2、教師: Tutor: 2013年 02月 25日英文:Thermal comfort in the future - Excellence and expectationP. Ole Fanger and Jrn ToftumInternational Centre for Indoor Environment and Energy Technical University of DenmarkAbstractThis paper predicts some trends foreseen in the new century as regards the indoor environment

3、 and thermal comfort. One trend discussed is the search for excellence, upgrading present standards that aim merely at an “acceptable” condition with a substantial number of dissatisfied. An important element in this connection is individual thermal control. A second trend is to acknowledge that ele

4、vated air temperature and humidity have a strong negative impact on perceived air quality and ventilation requirements. Future thermal comfort and IAQ standards should include these relationships as a basis for design. The PMV model has been validated in the field in buildings with HVAC systems that

5、 were situated in cold, temperate and warm climates and were studied during both summer and winter. In non-air-conditioned buildings in warm climates occupants may sense the warmth as being less severe than the PMV predicts, due to low expectations. An extension of the PMV model that includes an exp

6、ectancy factor is proposed for use in non-air-conditioned buildings in warm climates. The extended PMV model agrees well with field studies in non-air-conditioned buildings of three continents.Keywords: PMV, Thermal sensation, Individual control, Air quality, AdaptationA Search for ExcellencePresent

7、 thermal comfort standards (CEN ISO 7730, ASHRAE 55) acknowledge that there are considerable individual differences between peoples thermal sensation and their discomfort caused by local effects, i.e. by air movement. In a collective indoor climate, the standards prescribe a compromise that allows f

8、or a significant number of people feeling too warm or too cool. They also allow for air velocities that will be felt as a draught by a substantial percentage of the occupants.In the future this will in many cases be considered as insufficient. There will be a demand for systems that allow all person

9、s in a space to feel comfortable. The obvious way to achieve this is to move from the collective climate to the individually controlled local climate. In offices, individual thermal control of each workplace will be common. The system should allow for individual control of the general thermal sensat

10、ion without causing any draught or other local discomfort.A search for excellence involves providing all persons in a space with the means to feel thermally comfortable without compromise.Thermal Comfort and IAQPresent standards treat thermal comfort and indoor air quality separately, indicating tha

11、t they are independent of each other. Recent research documents that this is not true . The air temperature and humidity combined in the enthalpy have a strong impact on perceived air quality, and perceived air quality determines the required ventilation in ventilation standards. Research has shown

12、that dry and cool air is perceived as being fresh and pleasant while the same composition of air at an elevated temperature and humidity is perceived as stale and stuffy. During inhalation it is the convective and evaporative cooling of the mucous membrane in the nose that is essential for the fresh

13、 and pleasant sensation. Warm and humid air is perceived as being stale and stuffy due to the lack of nasal cooling. This may be interpreted as a local warm discomfort in the nasal cavity. The PMV model is the basis for existing thermal comfort standards. It is quite flexible and allows for the dete

14、rmination of a wide range of air temperatures and humidities that result in thermal neutrality for the body as a whole. But the inhaled air would be perceived as being very different within this wide range of air temperatures and humidities. An example: light clothing and an elevated air velocity or

15、 cooled ceiling, an air temperature of 28C and a relative humidity of 60% may give PMV=0, but the air quality would be perceived as stale and stuffy. A simultaneous request for high perceived air quality would require an air temperature of 20-22C and a modest air humidity. Moderate air temperature a

16、nd humidity decrease also SBS symptoms and the ventilation requirement, thus saving energy during the heating season. And even with air-conditioning it may be beneficial and save energy during the cooling season.PMV model and the adaptive modelThe PMV model is based on extensive American and Europea

17、n experiments involving over a thousand subjects exposed to well-controlled environments. The studies showed that the thermal sensation is closely related to the thermal load on the effector mechanisms of the human thermoregulatory system. The PMV model predicts the thermal sensation as a function o

18、f activity, clothing and the four classical thermal environmental parameters. The advantage of this is that it is a flexible tool that includes all the major variables influencing thermal sensation. It quantifies the absolute and relative impact of these six factors and can therefore be used in indo

19、or environments with widely differing HVAC systems as well as for different activities and different clothing habits. The PMV model has been validated in climate chamber studies in Asia as well as in the field, most recently in ASHRAEs worldwide research in buildings with HVAC systems that were situ

20、ated in cold, temperate and warm climates and were studied during both summer and winter. The PMV is developed for steady-state conditions but it has been shown to apply with good approximation at the relatively slow fluctuations of the environmental parameters typically occurring indoors. Immediate

21、ly after an upward step-wise change of temperature, the PMV model predicts well the thermal sensation, while it takes around 20 min at temperature down-steps .Field studies in warm climates in buildings without air-conditioning have shown, however, that the PMV model predicts a warmer thermal sensat

22、ion than the occupants actually feel. For such non-air-conditioned buildings an adaptive model has been proposed. This model is a regression equation that relates the neutral temperature indoors to the monthly average temperature outdoors. The only variable is thus the average outdoor temperature, w

23、hich at its highest may have an indirect impact on the human heat balance. An obvious weakness of the adaptive model is that it does not include human clothing or activity or the four classical thermal parameters that have a well-known impact on the human heat balance and therefore on the thermal se

24、nsation. Although the adaptive model predicts the thermal sensation quite well for non-air-conditioned buildings of the 1900s located in warm parts of the world, the question remains as to how well it would suit buildings of new types in the future where the occupants have a different clothing behav

25、iour and a different activity pattern.Why then does the PMV model seem to overestimate the sensation of warmth in non-air-conditioned buildings in warm climates? There is general agreement that physiological acclimatization does not play a role. One suggested explanation is that openable windows in

26、naturally ventilated buildings should provide a higher level of personal control than in air-conditioned buildings. We do not believe that this is true in warm climates. Although an openable window sometimes may provide some control of air temperature and air movement, this applies only to the perso

27、ns who work close to a window. What happens to persons in the office who work far away from the window? We believe that in warm climates air-conditioning with proper thermostatic control in each space provides a better perceived control than openable windows.Another factor suggested as an explanatio

28、n to the difference is the expectations of the occupants. We think this is the right factor to explain why the PMV overestimates the thermal sensation of occupants in non-air-conditioned buildings in warm climates. These occupants are typically people who have been living in warm environments indoor

29、s and outdoors, maybe even through generations. They may believe that it is their “destiny” to live in environments where they feel warmer than neutral. This may be expressed by an expectancy factor, e. The factor e may vary between 1 and 0.5. It is 1 for air-conditioned buildings. For non-air-condi

30、tioned buildings, the expectancy factor is assumed to depend on the duration of the warm weather over the year and whether such buildings can be compared with many others in the region that are air-conditioned. If the weather is warm all year or most of the year and there are no or few other air-con

31、ditioned buildings, e may be 0.5, while it may be 0.7 if there are many other buildings with air-conditioning. For non-air-conditioned buildings in regions where the weather is warm only during the summer and no or few buildings have air-conditioning, the expectancy factor may be 0.7 to 0.8, while i

32、t may be 0.8 to 0.9 where there are many air-conditioned buildings. In regions with only brief periods of warm weather during the summer, the expectancy factor may be 0.9 to 1. Table 1 proposes a first rough estimation of ranges for the expectancy factor corresponding to high, moderate and low degre

33、es of expectation.ExpectationClassification of buildingsExpectancyfactor, eHighNon-air-conditioned buildings located in regions where air-conditioned buildings are common. Warm periods occurring briefly during the summer season.0.9 - 1.0ModerateNon-air-conditioned buildings located in regions with s

34、ome air-conditioned buildings. Warm summer season.0.7 - 0.9LowNon-air-conditioned buildings located in regions with few air-conditioned buildings. Warm weather during all seasons.0.5 - 0.7Table 1. Expectancy factors for non-air-conditioned buildings in warm climates.A second factor that contributes

35、to the difference between the PMV and actual thermal sensation in non-air-conditioned buildings is the estimated activity. In many field studies in offices, the metabolic rate is estimated on the basis of a questionnaire identifying the percentage of time the person was sedentary, standing, or walki

36、ng. This mechanistic approach does not acknowledge the fact that people, when feeling warm, unconsciously tend to slow down their activity. They adapt to the warm environment by decreasing their metabolic rate. The lower pace in warm environments should be acknowledged by inserting a reduced metabol

37、ic rate when calculating the PMV.To examine these hypotheses further, data were downloaded from the database of thermal comfort field experiments. Only quality class II data obtained in non-air-conditioned buildings during the summer period in warm climates were used in the analysis. Data from four

38、cities (Bangkok, Brisbane, Athens, and Singapore) were included, representing a total of more than 3200 sets of observations . The data from these four cities with warm climates were also used for the development of the adaptive model.For each set of observations, recorded metabolic rates were reduc

39、ed by 6.7% for every scale unit of PMV above neutral, i.e. a PMV of 1.5 corresponded to a reduction in the metabolic rate of 10%. Next, the PMV was recalculated with reduced metabolic rates using ASHRAEs thermal comfort tool . The resulting PMV values were then adjusted for expectation by multiplica

40、tion with expectancy factors estimated to be 0.9 for Brisbane, 0.7 for Athens and Singapore and 0.6 for Bangkok. As an average for each building included in the field studies, Figure 1 and Table 2 compare the observed thermal sensation with predictions using the new extended PMV model for warm clima

41、tes.Comparison of observed mean thermal sensation with predictions made using the new extension of the PMV model for non-air-conditioned buildings in warm climates. The lines are based on linear regression analysis weighted according to the number of responses obtained in each building.CityExpectanc

42、yfactorPMV adjusted toproper activityPMV adjustedfor expectationObservedmean voteBangkok0.62.01.21.3Singapore0.7Athens0.71.00.70.7Brisbane0.8Table 2. Non-air-conditioned buildings in warm climates. Comparison of observed thermal sensation votes and predictions made using the new ex

43、tension of the PMV model.The new extension of the PMV model for non-air-conditioned buildings in warm climates predicts the actual votes well. The extension combines the best of the PMV and the adaptive model. It acknowledges the importance of expectations already accounted for by the adaptive model

44、, while maintaining the PMV models classical thermal parameters that have direct impact on the human heat balance. It should also be noted that the new PMV extension predicts a higher upper temperature limit when the expectancy factor is low. People with low expectations are ready to accept a warmer

45、 indoor environment. This agrees well with the observations behind the adaptive model.Further analysis would be useful to refine the extension of the PMV model, and additional studies in non-air-conditioned buildings in warm climates in different parts of the world would be useful to further clarify

46、 expectation and acceptability among occupants. It would also be useful to study the impact of warm office environments on work pace and metabolic rate.ConclusionsThe PMV model has been validated in the field in buildings with HVAC systems, situated in cold, temperate and warm climates and studied d

47、uring both summer and winter. In non-air-conditioned buildings in warm climates, occupants may perceive the warmth as being less severe than the PMV predicts, due to low expectations.An extension of the PMV model that includes an expectancy factor is proposed for use in non-air-conditioned buildings

48、 in warm climates.The extended PMV model agrees well with field studies in non-air-conditioned buildings in warm climates of three continents.Thermal comfort and air quality in a building should be considered simultaneously. A high perceived air quality requires moderate air temperature and humidity

49、.AcknowledgementFinancial support for this study from the Danish Technical research Council is gratefully acknowledged.ReferencesAndersson, L.O., Frisk, P., Lfstedt, B., Wyon, D.P., (1975), Human responses to dry, humidified and intermittently humidified air in large office buildings. Swedish Buildi

50、ng Research Document Series, D11/75.ASHRAE 55-1992: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc.Baker, N. and Standeven, M. (1995), A Behavioural Approach to Thermal Comfort Assessment in Naturally Ventilated Bu

51、ildings. Proceedings from CIBSE National Conference, pp 76-84.Brager G.S., de Dear R.J. (1998), Thermal adaptation in the built environment: a literature review. Energy and Buildings, 27, pp 83-96.Cena, K.M. (1998), Field study of occupant comfort and office thermal environments in a hot-arid climat

52、e. (Eds. Cena, K. and de Dear, R.). Final report, ASHRAE 921-RP, ASHRAE Inc., Atlanta.de Dear, R., Fountain, M., Popovic, S., Watkins, S., Brager, G., Arens, E., Benton, C., (1993a), A field study of occupant comfort and office thermal environments in a hot humid climate. Final report, ASHRAE 702 RP

53、, ASHRAE Inc., Atlanta.de Dear, R., Ring, J.W., Fanger, P.O. (1993b), Thermal sensations resulting from sudden ambient temperature changes. Indoor Air, 3, pp 181-192.de Dear, R. J., Leow, K. G. and Foo, S.C. (1991), Thermal comfort in the humid tropics: Field experiments in air-conditioned and natur

54、ally ventilated buildings in Singapore. International Journal of Biometeorology, vol. 34, pp 259-265.de Dear, R.J. (1998), A global database of thermal comfort field experiments. ASHRAE Transactions, 104(1b), pp 1141-1152.de Dear, R.J. and Auliciems, A. (1985), Validation of the Predicted Mean Vote

55、model of thermal comfort in six Australian field studies. ASHRAE Transactions, 91(2), pp 452- 468.de Dear, R.J., Brager G.S. (1998), Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1a), pp 145-167.de Dear, R.J., Leow, K.G., and Ameen, A. (1991), Thermal comfo

56、rt in the humid tropics - Part I: Climate chamber experiments on temperature preferences in Singapore. ASHRAE Transactions 97(1), pp 874-879.Donini, G., Molina, J., Martello, C., Ho Ching Lai, D., Ho Lai, K., Yu Chang, C., La Flamme, M., Nguyen, V.H., Haghihat, F. (1996), Field study of occupant com

57、fort and office thermal environments in a cold climate. Final report, ASHRAE 821 RP, ASHRAE Inc., Atlanta.Fang, L., Clausen, G., Fanger, P.O. (1999), Impact of temperature and humidity on chemical and sensory emissions from building materials. Indoor Air, 9, pp 193-201.Fanger, P.O. (1970), Thermal comfort. Danish Technical Press, Copenhagen, Denmark.Fouintain, M.E. and Huizenga, C. (1997), A thermal sensation prediction tool for use by the profession. ASHRAE Transactions, 103(2), pp 130-136.Humphreys, M.A. (1978), Outdoor temperatures and comfort indoors. Building Research and Practice, 6(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論