2022屆四川省簡陽市高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁
2022屆四川省簡陽市高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁
2022屆四川省簡陽市高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁
2022屆四川省簡陽市高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁
2022屆四川省簡陽市高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認(rèn)真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為( )A BCD2 “紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向

2、該正方形內(nèi)隨機(jī)投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是( )ABC10D3已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是( )ABCD4過拋物線C:y24x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準(zhǔn)線,點N在l上且MNl,則M到直線NF的距離為( )A BCD5已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為( )A2BCD36已知為等腰直角三角形,為所在平面內(nèi)一點,且,則( )ABCD7( )ABCD8一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖

3、是等腰三角形,該幾何體的表面積是 ( ) ABCD9如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則( )ABCD10從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計值為ABCD11已知平面向量,滿足,且,則與的夾角為( )ABCD12已知函數(shù)是定義在上的偶函數(shù),當(dāng)時,則,,的大小關(guān)系為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,且,則_14某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二 人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人

4、數(shù)為_15若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時,k的值為_.16已知a,b均為正數(shù),且,的最小值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點,證明:.18(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點,若,求的值19(12分)在平面直角坐標(biāo)系中,已

5、知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、試判斷是否為定值,并說明理由20(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時,求的周長.21(12分)已知ABC三內(nèi)角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B4sinAsinB+3sin2C(1)求cosC的值;(2)若a3,c,求ABC的面積22(10分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點的

6、坐標(biāo).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.2D【解析】直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.3A【解析】先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)

7、系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.4C【解析】聯(lián)立方程解得M(3,),根據(jù)MNl得|MN|MF|4,得到MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y(x1)由得x或x3.由M在x軸的上方得M(3,),由MNl得|MN|MF|314又NMF等于直線FM的傾斜

8、角,即NMF60,因此MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.5A【解析】由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運算能力,是一道容易題.6D【解析】以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,由,易

9、得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.7D【解析】利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.8D【解析】由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D9B【解析】連接、,即可得到,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,是半圓弧的兩個三等分點, ,且,所以四邊形為棱形,故選:B【點睛】本題考查平面向量的數(shù)量

10、積及其運算律的應(yīng)用,屬于基礎(chǔ)題.10C【解析】由題可得,解得,則,所以這部分男生的身高的中位數(shù)的估計值為,故選C11C【解析】根據(jù), 兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且, 所以,所以,所以 ,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎(chǔ)題.12C【解析】根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項.【詳解】依題意得,當(dāng)時,因為,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,即,故選:C.【點睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題

11、.二、填空題:本題共4小題,每小題5分,共20分。13【解析】試題分析:因,故,所以,,應(yīng)填.考點:三角變換及運用14【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案15【解析】二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.點Q到底面的距離與到點P的距離之比為正常數(shù)k,則,動點Q的軌跡是拋物線,即則.二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的

12、側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.16【解析】本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當(dāng)且僅當(dāng),即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2)見解析.【解析】(1)將所求問題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問題;(2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.【詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設(shè),則,當(dāng)且

13、僅當(dāng)時,等號成立,所以當(dāng)時,所以存在,使得成立,所以的取值范圍為。(2)當(dāng)時,則,從而所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因為,則,從而不等式化為,設(shè),則,所以在上單調(diào)遞增,所以即不等式成立,故原不等式成立.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)證明不等式,這里要強(qiáng)調(diào)一點,在證明不等式時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理,本題是一道有高度的壓軸解答題.18(1)證明見解析(2)(3)【解析】(1)取中點為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進(jìn)而求證;(2)以為原點,過作的平行線,分別以,分

14、別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),由點在棱上,可設(shè),即可得到,再求得平面的法向量,進(jìn)而利用數(shù)量積求解;(3)設(shè),則,求得,即可求得點的坐標(biāo),再由與平面的法向量垂直,進(jìn)而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內(nèi),所以,所以.(2)以為原點,過作的平行線,分別以,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),則,因為在棱上,可設(shè),所以,設(shè)平面的法向量為,因為,所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當(dāng)時,取最大值.(3)設(shè),則有,得,設(shè),那么,所以,所以.因為,所以.又因為,所以,設(shè)平面的法向量為,則,

15、即,可得,即 因為在平面內(nèi),所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.19(1)(2)為定值【解析】(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得把和代入,得和 ,的表達(dá)式,比即可得出為定值【詳解】解:(1)依題意,所以橢圓的標(biāo)準(zhǔn)方程為(2)為定值.因為直線分別與直線和直線相交,所以,直線一定存在斜率設(shè)直線:,由得,由,得 把代入,得,把代入,得,又因為,所以,由式,得, 把式代入式,得,即為定值【點睛】本題考查橢圓的定

16、義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.20(1)(2)【解析】(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時,最大,結(jié)合(1)中條件,即可求出最大時,對應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當(dāng)且僅當(dāng)時,等號成立.因為的面積.所以當(dāng)時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力21(1);(2)

17、或【解析】(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b1或b3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b23c24ab,即a2+b2c2ab,cosC;(2)把a(bǔ)3,c,代入3a2+3b23c24ab得:b1或b3,cosC,C為三角形內(nèi)角,sinC,SABCabsinC3bb,則ABC的面積為或【點睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進(jìn)行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.22(1);(2)【解析】(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點,坐標(biāo),設(shè)直線的方程為,易知,可得點的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論