細胞代謝與腫瘤課件_第1頁
細胞代謝與腫瘤課件_第2頁
細胞代謝與腫瘤課件_第3頁
細胞代謝與腫瘤課件_第4頁
細胞代謝與腫瘤課件_第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、分子細胞生物學(xué)進展Metabolic Strategies in Cancer癌癥的代謝策略Lecture Objectives To provide a brief summary of the history of research in cancer metabolism To summarize the metabolic strategies in cancer cells To reveal genetic mechanisms behind the metabolic phenotypes in tumors To give an example of transcription

2、al regulation in cancer metabolism (our work on ChREBP)TermsGlycolysis 糖酵解TCA cycle/Oxidative phosphorylation 三羧酸循環(huán)/氧化磷酸化Macromolecules(生物)大分子Anabolism 合成代謝Catabolism 分解代謝Isoenzyme 同工酶Warburg effect/aerobic glycolysis 有氧糖酵解FDG-PET 18F脫氧葡萄糖(FDG)-正電子發(fā)射體層顯像(PET)Hallmarks of cancer 癌癥的特征IDH (isocitrate

3、dehydrogenase) 異檸檬酸脫氫酶Oncometabolite 致癌代謝物Metabolic syndrome 代謝綜合癥Truncated TCA cycle 截短的/不完整的三羧酸循環(huán)ReferencesThe Molecular Basis of Cancer (Third Edition) Copyright 2008 Elsevier Inc. All rights reserved Edited by: John Mendelsohn, MD, Peter M. Howley, MD, Mark A. Israel, MD, Joe W. Gray, PhD, and C

4、raig B. Thompson, MD ISBN: 978-1-4160-3703-3Understanding the Warburg effect: the metabolic requirements of cell proliferation. Vander Heiden MG, Cantley LC, Thompson CB. Science. 2009 May 22;324(5930):1029-33. Hallmarks of cancer: the next generation. Hanahan D, Weinberg RA. Cell. 2011 Mar 4;144(5)

5、:646-74.Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Ward PS, Thompson CB. Cancer Cell. 2012 Mar 20;21(3):297-308.Part I To provide a brief summary of the history of research in cancer metabolism To summarize the metabolic strategies in cancer cells To reveal genetic m

6、echanisms behind the metabolic phenotypes in tumors To give an example of transcriptional regulation in cancer metabolism (our work on ChREBP)Otto Warburg and Warburg EffectOtto Heinrich Warburg(1883-1970)Nobel Prize in Physiology or Medicine (1931)discovery of the nature and mode of action of the r

7、espiratory enzyme.Vander Heiden et al, Science 2009葡萄糖丙酮酸乳酸氧化磷酸化無氧糖酵解有氧糖酵解FDG-PET (fluorodeoxyglucose-positron emission tomography)Vander Heiden et al, Science 2009靜脈注射18F-FDG后,18F-FDG 隨血液循環(huán)到達腫瘤所在,由于腫瘤細胞表面存在高表達的葡萄糖轉(zhuǎn)運蛋白(Glut1和Glut3),使18F-FDG大量進入腫瘤細胞內(nèi),并在細胞內(nèi)的已糖激酶(大多數(shù)惡性腫瘤內(nèi)已糖激酶含量明顯高于良性病變和正常組織)作用下,轉(zhuǎn)變?yōu)?-磷酸

8、-18F-FDG,由于FDG與正常葡萄糖存在分子結(jié)構(gòu)的差異,它不參與葡萄糖的進一步代謝而滯留在細胞。通過PET動、靜態(tài)掃描,能準(zhǔn)確地測量腫瘤的葡萄糖代謝異常程度并對其進行顯像。在某些腫瘤,如高分化原發(fā)性肝癌,細胞內(nèi)存在較高水平的葡萄糖-6-磷酸酶,能將存在于細胞內(nèi)的6-磷酸-18F-FDG水解成18F-FDG ,后者通過自由擴散游離出細胞,18F-FDG便不在腫瘤細胞內(nèi)聚集而出現(xiàn)假陰性。FDG-PET腫瘤顯像的原理Sidney Weinhouse(1909-2001)isozyme in hepatomas Peter PedersenJohns Hopkins Univ. School of

9、 MedicineChi DangUniv. of PennsylvaniaSchool of MedicineGregg SemenzaJohns Hopkins Univ. School of MedicineScientists in the Field of Cancer MetabolismLewis CantleyHarvard Medical SchoolTak MakCanadaUniv. of Toronto管坤良復(fù)旦大學(xué)UCSD熊躍復(fù)旦大學(xué)Univ. of North CarolinaAnd many moreCraig ThompsonMemorial Sloan-Ket

10、tering Cancer Center 趙世民復(fù)旦大學(xué)雷群英復(fù)旦大學(xué)醫(yī)學(xué)院SU2C Dream Team ScientistsTargeting PI3K in Womens CancersLewis C. Cantley, PhD, Charles Sawyers, MD, and Gordon B. Mills, MD, PhDCutting Off the Fuel Supply: A New Approach to the Treatment of Pancreatic CancerCraig Thompson, MD, and Daniel D. von Hoff, MD, FAC

11、P Bioengineering and Clinical Applications of Circulating Tumor Cell ChipDaniel Haber, MD, PhD, and Mehmet Toner, PhDBringing Epigenetic Therapy to the Forefront of Cancer ManagementStephen Baylin, MD, and Peter A. Jones, PhDAn Integrated Approach to Targeting Breast Cancer Molecular Subtypes and Th

12、eir Resistance Phenotypes Joe Gray, PhD, and Dennis Slamon, MD, PhDThe Original Six Hallmarks of CancerHanahan D and Weinberg RA, Cell. 2000生長信號的自給自足性對于抑制生長信號的不敏感性逃避細胞凋亡無限的復(fù)制潛力持續(xù)的血管生成組織浸潤和轉(zhuǎn)移基因組不穩(wěn)定和突變細胞能量異常促進腫瘤的炎癥避免免疫摧毀The New Ten Hallmarks of CancerHanahan D and Weinberg RA, Cell. 2011 在分子水平上抑制代謝中的關(guān)

13、鍵酶而降低糖酵解和其它合成代謝通路活性可以減緩腫瘤細胞生長。 對癌癥病人全基因組測序找到了某些高頻率突變的代謝基因,這些基因的突變導(dǎo)致代謝中間物失調(diào)從而對于細胞表觀遺傳性狀和信號轉(zhuǎn)導(dǎo)通路產(chǎn)生重要影響。 大規(guī)模流行病學(xué)研究表明肥胖病,糖尿病等代謝性綜合癥患者的各類癌癥發(fā)病率明顯上升。Why is Cancer Metabolism Important? 在分子水平上抑制代謝中的關(guān)鍵酶而降低糖酵解和其它合成代謝通路活性可以減緩腫瘤細胞生長。 對癌癥病人全基因組測序找到了某些高頻率突變的代謝基因,這些基因的突變導(dǎo)致代謝中間物失調(diào)從而對于細胞表觀遺傳性狀和信號轉(zhuǎn)導(dǎo)通路產(chǎn)生重要影響。 大規(guī)模流行病學(xué)研究

14、表明肥胖病,糖尿病等代謝綜合征患者的各類癌癥發(fā)病率明顯上升。Why is Cancer Metabolism Important? GARBER K, Science 2006HK = Hexokinase, 己糖激酶PDK = pyruvate dehydrogenase kinase, 丙酮酸脫氫酶激酶PDH = pyruvate dehydrogenase, 丙酮酸脫氫酶ACL = ATP citrate lyase, ATP-檸檬酸裂解酶Strategies for Targeting Tumor Energy Pathways (I)Strategies for Targeting

15、Tumor Energy Pathways (II) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Vander Heiden MG et al, Science. 2010 Sep 17;329(5998):1492-9. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Christofk HR and Vander Heiden MG et

16、 al, Nature. 2008 Mar 13;452(7184):230-3. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Christofk HR andVander Heiden MG et al, Nature. 2008 Mar 13;452(7184):181-6.PKM2, pyruvate kinase M2, 丙酮酸激酶-M2PGAM, phosphoglyceromutase, 磷酸甘油酸變位酶Cancer cell proliferation can be inhibited by decreasin

17、g glycolysis and anabolic metabolismGlucoseGlucoseLactateFatty acidAmino acidNucleotideTCAcycleCancer cell proliferationGlucoseGlucoseLactateFatty acidAmino acidNucleotideTCAcycleCancer cell proliferation 在分子水平上抑制代謝中的關(guān)鍵酶而降低糖酵解和其它合成代謝通路活性可以減緩腫瘤細胞生長。 對癌癥病人全基因組測序找到了某些高頻率突變的代謝基因,這些基因的突變導(dǎo)致代謝中間物失調(diào)從而對于細胞表觀

18、遺傳性狀和信號轉(zhuǎn)導(dǎo)通路產(chǎn)生重要影響。 大規(guī)模流行病學(xué)研究表明肥胖病,糖尿病等代謝綜合征患者的各類癌癥發(fā)病率明顯上升。Why is Cancer Metabolism Important? Roles of IDH1, IDH2, SDH, and Fumarase in Cellular MetabolismIDH,異檸檬酸脫氫酶SDH, 琥珀酸脫氫酶Fumarase,富馬酸酶Thompson CB, N Engl J Med. 2009 An integrated genomic analysis of human glioblastoma multiforme.神經(jīng)膠質(zhì)瘤Parsons D

19、W et al, Science. 2008 Sep 26;321(5897):1807-12.IDH1 and IDH2 mutations in gliomas. Yan H et al, N Engl J Med. 2009 Feb 19;360(8):765-73.Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Zhao S et al, Science. 2009 Apr 10;324(5924):261-5.Cancer-associ

20、ated IDH1 mutations produce 2-hydroxyglutarate. 2-羥基戊二酸Dang L et al, Nature. 2009 Dec 10;462(7274):739-44. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Figueroa ME et al, Cancer Cell. 2010 Dec 14;18(6):553-6

21、7. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of -ketoglutarate-dependent dioxygenases. Xu W et al, Cancer Cell. 2011 Jan 18;19(1):17-30.IDH mutation impairs histone demethylation and results in a block to cell differentiation. Lu C et al, Nature. 2012 Feb 15;483(7390):474-8.IDH, 異

22、檸檬酸脫氫酶Metabolic pathways provide substrates for post-translational modifications (PTMs) that influence cell signalingMetallo CM et al, Genes Dev. 2010 在分子水平上抑制代謝中的關(guān)鍵酶而降低糖酵解和其它合成代謝通路活性可以減緩腫瘤細胞生長。 對癌癥病人全基因組測序找到了某些高頻率突變的代謝基因,這些基因的突變導(dǎo)致代謝中間物失調(diào)從而對于細胞表觀遺傳性狀和信號轉(zhuǎn)導(dǎo)通路產(chǎn)生重要影響。 大規(guī)模流行病學(xué)研究表明肥胖病,糖尿病等代謝綜合征患者的各類癌癥發(fā)病率明

23、顯上升。Why is Cancer Metabolism Important? 中華醫(yī)學(xué)會糖尿病學(xué)分會(CDS)建議代謝綜合征的診斷標(biāo)準(zhǔn)具備以下4項組成成分中的3項或全部者: 超重和(或)肥胖 高血糖 高血壓 血脂紊亂Metabolic SyndromeOverweight, obesity and cancer: epidemiological evidence and proposed mechanisms.Calle EE, Kaaks R. Nat Rev Cancer. 2004 Aug;4(8):579-91. Part II To provide a brief summary

24、of the history of research in cancer metabolism To summarize the metabolic strategies in cancer cells To reveal genetic mechanisms behind the metabolic phenotypes in tumors To give an example of transcriptional regulation in cancer metabolism (our work on ChREBP)What do Cells Need to Grow and Prolif

25、erate? Substrates for Growth (such as Glucose and Glutamine) ATP and NADH and NADPH Appropriate Regulation of Metabolic Pathways to Maximize BiosynthesisMetabolic Strategies in Cancer CellsCancer cells High nutrient uptakeHigh glycolytic rateIncreased anabolism Low activity of TCA cycleor “Truncated

26、” TCA Cycle.Normal cells Basal nutrient uptakeBasal glycolytic rateBasal anabolism High activity of TCA cycleOtto Warburg and Warburg EffectOtto Heinrich Warburg(1883-1970)Nobel Prize in Physiology or Medicine (1931)discovery of the nature and mode of action of the respiratory enzyme.Vander Heiden e

27、t al, Science 2009葡萄糖丙酮酸乳酸氧化磷酸化無氧糖酵解有氧糖酵解Why is the Rate of Glycolysis So High in Tumor Cells?Reason 1:To Produce Sufficient Energy and Metabolic Intermediates for BiosynthesisGlycolysis Produces Energy and Metabolic Intermediates for Tumor Cell ProliferationMacromolecules:ProteinLipidNucleic acidPr

28、oteinLipidNucleic acidWhy is the Rate of Glycolysis So High in Tumor Cells?Reason 2:To Survive Periods of Hypoxia 缺氧Reason 3:To Secret Lactate and Create a Microenvironment Favorable for Tumor GrowthTumors Use a “Truncated” Form of the TCA CycleGlutamine Oxidation Makes the Truncated TCA Cycle Possi

29、ble.Part III To provide a brief summary of the history of research in cancer metabolism To summarize the metabolic strategies in cancer cells To reveal genetic mechanisms behind the metabolic phenotypes in tumors To give an example of transcriptional regulation in cancer metabolism (our work on ChRE

30、BP)TermsPI3K = Phosphatidylinositol 3-kinases Akt / PKB, a serine/threonine protein kinase P53, a transcription factorAMPK = AMP-activated protein kinase HIF = Hypoxia-inducible factor, a transcription factorMyc, a transcription factorChREBP = carbohydrate responsive element-binding protein, a trans

31、cription factor ROS = Reactive oxygen species 活性氧The phosphatidylinositol 3-kinases (PI3Ks) are members of a conserved family of intracellular lipid kinases.The PI3K PathwayEngelman JA et al, Nat Rev Genet. 2006Mutations in the PI3K Pathway in CancersEngelman JA et al, Nat Rev Genet. 2006 The PI3K/A

32、kt Pathway Drives Growth MetabolismP53, a transcription factor.Nutrient Deprivation Signals to p53Vousden KH and Ryan KM. Nat Rev Cancer. 2009 Regulation of Energy Production by p53Vousden KH and Ryan KM. Nat Rev Cancer. 2009 Kinase LKB1 and AMPK are activated by the high AMP/ATP ratio that occurs d

33、uring energy limitation.The LKB1/AMPK Pathway Allows Cells to Respond to Metabolic Stress by Engaging Catabolic MetabolismAMPK = AMP-activated protein kinase The transcription factor HIF-1 contributes to the high rate of glycolysis in tumors.Semenza GL. Curr Opin Genet Dev. 2010HIF-1: Upstream and D

34、ownstream of Cancer MetabolismThe Myc proteins are a family of transcription factors that regulate cell cycle entry and metabolism.c-Myc and HIF Regulate Carbon MetabolismGordan JD et al, Cancer Cell. 2007.Myc Regulates both Glucose and Glutamine Metabolic PathwaysDang CV. Cancer Res. 2010.GLS = glu

35、taminase, 谷氨酰胺酶ASCT2 = 谷氨酰胺載體Part IV To provide a brief summary of the history of research in cancer metabolism To summarize the metabolic strategies in cancer cells To reveal genetic mechanisms behind the metabolic phenotypes in tumors To give an example of transcriptional regulation in cancer meta

36、bolism (our work on ChREBP)Cancer cell proliferation can be inhibited by decreasing glycolysis and anabolic metabolismGlucoseGlucoseLactateFatty acidAmino acidNucleotideTCAcycleCancer cell proliferationGlucoseGlucoseLactateFatty acidAmino acidNucleotideTCAcycleCancer cell proliferationMouse ChREBP P

37、rotein1864S196S568T666PKAAMPKPKAGlucose sensing module ChREBP (carbohydrate responsive element binding protein) binds the carbohydrate response element (ChoRE) which consists of two E-box like consensus sequences separated by five base pairs. In adults, expression of ChREBP is detectable in most tis

38、sues but is at its highest levels in liver and adipose tissue. ChREBP null mice show decreased glycolysis and lipogenesis as well as intolerance to dietary carbohydrate. Loss of ChREBP in leptin null ob/ob mice results in alleviation of obesity. NESNLSPro-richbHLH/ZIPZIP likeRoles of LXR, ChREBP, an

39、d SREBP-1c in the Transcriptional Control of Triglyceride Synthesis in LiverDenechaud PD et al, JCI 2008Hormone/nutrient-mediated Regulation of ChREBP Activity in HepatocytesUyeda K et al, Cell metabolism 2006The Role of ChREBP in Glycolysis and Lipogenesis in HepatocytesUyeda K et al, Cell metaboli

40、sm 2006The question:What is the Role of ChREBP in Cancer Cells?Proliferative Cells Depend on ChREBP to Maintain Proliferative Expansion(HCT116 Colorectal Cancer Cells)Tong et al, Proc Natl Acad Sci U S A. 2009 Proliferative Cells Depend on ChREBP to Maintain Proliferative Expansion (HepG2 Cells)Supp

41、ression of ChREBP Leads to a Metabolic Switch from Aerobic Glycolysis to Mitochondrial Respiration (HCT116 Colorectal Cancer Cells) Warburg EffectVander Heiden et al, Science 2009Suppression of ChREBP Leads to Decreased Lipid and Nucleotide Biosynthesis (HCT116 Cells)DeBerardinis RJ et al, Proc Natl

42、 Acad Sci U S A. 2007Effect of ChREBP Knockdown on Labeling in Acid Soluble Metabolites from 1,6-13C2Glucose (HCT116 Cells)ControlChREBP knockdownpro-4lac-3ala-3glut-4glth-4glut-3glut-2Glycolytic Intermediatesasp-3HHHHHHgn-2gn-4gn-3pro-4lac-3glut-4glut-3glut-2Glycolytic Intermediatesasp-3HHHHHHglut-2/glut-4=0.230.04glut-2/glut-4=0.370.07Suppression of ChREBP Induces p53 Activation (HCT116 Cells)Suppression of ChREBP Induces Cell Cycle Arrest (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論