版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、FormationoftheSouthPacificShallowSalinityMinimum:ASouthernOceanPathwaytotheTropicalPacificIntheeasternSouthPacificOcean,atadepthofabout200m,asalinityminimumisfound.Thisminimumisassociatedwithaparticularwatermass,theShallowSalinityMinimumWater(SSMW).SSMWoutcropsinafreshtongue(SAsubminA)centeredatabou
2、t45S.2sAsup-1a.-3人).Thetransformedwaterturnsnorthwardwiththegyrecirculationandcontributestothehydrographicstructureofthegyrefarthernorth.BecausetheSouthPacificprovidesmostofthesourcewatersthatupwellalongtheequatorialPacific,variabilityinSouthPacifichydrographymayinfluenceequatorialPacifichydrography
3、.Becauseone-halfofthetransformationisfoundtobecontrolledthroughEkmantransport,variabilityinwindforcingatthesouthernrimofthesubtropicalgyremaybeasourceforvariabilityoftheequatorialPacific.(ProQuestInformationandLearning:.denotesformulaeomitted.)IntroductionThetropical/extratropicalexchangeofwatercanb
4、eviewedasameridional-verticalorsubtropicalcell(STC)drivenbysubductionandupwelling,whichareconnectedviaEkmantransportandinteriorflow.Intheextratropicswaterissubductedfromthemixedlayerandflowsequatorwardininteriorwind-drivenpathwaysandwesternboundarycurrents.Neartheequatorthiswaterupwellsbackintothemi
5、xedlayerandistransportedpolewardtothesubductionsitesthroughthemeridionalcomponentoftheEkmantransportseeSchottetal.(2004)foranSTCreview.STCshavebeenidentifiedinalloceansusingobservationaldata(e.g.,JohnsonandMcPhaden1999;Schottetal.2002;Zhangetal.2003)andmodels(e.g.,McCrearyandLu1994;Rothsteinetal.199
6、8).OneinterestinstudyingtheSTCsistheirpotentialinvolvementinlow-frequencyclimatevariabilityoftheocean-atmospheresystem,becausebothupwellingandsubductionarecontrolledthroughair-seaexchangeofmomentum,heat,andfreshwater.InparticularthevariabilityofthePacificOceanSTCisofimportance,becauseitmayberelatedt
7、oElNi?o-SouthernOscillation(ENSO)withitsfar-reachingsocioeconomicimpacts.Pacificvariabilityhasbeendecomposedintointerannualandinterdecadalvariability(Zhangetal.1997).InterannualvariabilityisusuallyassociatedwiththeENSOphenomenonandmaybeexplainedthroughatmosphere-oceaninterplayneartheequator.Decadalv
8、ariability,however,couldbetheresultofvariabilitythatisgeneratedintheextratropicaloceanandsubsequentlyadvectedtotheequator.Twomechanismshavebeenproposedtogeneratevariabilitybasedontemperature(T)andtransport(v).Kleemanetal.(1999)proposedamodelsolelybasedonfluctuationsinSTCtransport,thatis,withoutfluct
9、uationsinthetemperaturefield(vT).Fluctuationsintransportgeneratesea-surfacetemperaturefluctuationsthatcouldfeedbackontheatmosphericcirculation.Observationalevidencefortransportfluctuationsinthenear-equatorialflowhasbeenpresentedby,forexample,McPhadenandZhang(2002)andMeinenetal.(2001).GuandPhilander(
10、1997)proposedamechanismbasedontheadvectionoftemperatureanomalieswithanaverageflowfield(vT).Subductedtemperatureanomaliesintheextratropicsappearwithatimelagattheequator.TheirupwellingcausestemperatureanomaliestoappearintheTropicsthatfeedbackontotheatmosphericmeridionalcirculation.Theappearanceofawarm
11、anomalyalongtheequatorstrengthenstheextratropicalwindand,throughanincreaseofevaporation,introducesacoldanomalyintheextratropics.Thesubductionofsuchacoldanomalythenappearswithatimelagalongtheequatorwhereitsupwellinginitiatesacoldanomalythere.However,thepersistenceoftemperatureanomaliessubductedintoth
12、esubtropicalgyreiscurrentlyunderdebate.Hindcastrunsofcoupledocean-atmospheremodelssuggestthatequatorialPacificisothermaldepthvariabilitymaybegeneratedbythelocalwindstress(andEkmanpumping)variabilityattheequatorratherthanfromanomaliesofextratropicalorigin(Schneideretal.1999).InparticularfortheNorthPa
13、cificlittlecouplingbetweenTropicsandextratropicswasfound.However,YeagerandLarge(2004)identifiedsea-surfacetemperaturevariabilityalongtheequatorgeneratedthroughisopycnaladvectionofnotonlytemperaturebuttemperature/salinity(T/S)anomalies.Theyanalyzedoutputofanoceanmodelforcedwith40yearsofrealisticsurfa
14、cefluxes.Theirworkemphasizestheroleofbothheatandfreshwateranomaliesindecadalvariability.McCrearyandLu(1994)showedthatthermoclinewatermovingequatorwardoriginatesfromtheeastandpolewardsideofthesubtropicalgyres.ThissuggestsfortheSouthPacific(SP)thattheSouthernOcean(SO)canplayaroleinventilatingthePacifi
15、cequatorialthermocline(Toggweileretal.1991;Johnson2001).AprominentexchangepathfromtheSOtowardtheequatorinallSouthernHemisphereoceansisthefreshtongueofAntarcticIntermediateWater(AAIW).AAIWhasitsorigininthesubductionofpolarsurfacewaters(see,e.g.,Molinelli1978)andspreadsatthebaseofthesubtropicalgyres,a
16、tdepthsbetween600and1000m.However,withacoredensityanomalyofabout27.2kgmAsup-3A,AAIWliesbelowthewaterthatupwellsalongthePacificequator.UpwellingalongthePacificequatoris,rather,fedinthedensityrangeofwatersadvectedintheEquatorialUndercurrent(EUC)andthesubsurfacecountercurrents(SCC)(Roweetal.2000),thesu
17、bsurfacepathwaysfromwesttoeast(anddeepandshallow)alongtheequator.TheequatorialPacificisfedbyabout60%-3人(JohnsonandMcPhaden1999;Rodgersetal.2003).AsecondfreshtongueisfoundaboveAAIWintheinteriorofthesoutheastSP(atabout26kgmAsup-3A;seeFig.1)namedShallowSalinityMinimumWater(SSMW;Reid1973;TsuchiyaandTall
18、ey1996)orEasternSouthPacificIntermediateWater(EmeryandMeincke1986;Schneideretal.2003).SSMWisfoundinbothhemispheres.Itsformationhasbeenexplainedthroughthesinkingofsubantarcticsurfacewatersbelowhigher-salinitywaters(e.g.,Reid1973).Consequentlyoneexpectsacorrespondingsignatureintheseasurfacesalinitywhe
19、reSSMWissubducted.NorthPacificsurfacewatersfreshennorthofthesubtropicalgyreandalongtheeasternboundary(Fig.1)sothattheconceptualmodelforSSMWformationholdshere.IntheSP,however,alocalmeridionalfreshtongueislocatedatabout45.Consequently,asimplenorthwardtransferoffreshsurfacewaterwithsubsequentsubduction
20、cannotexplaintheformationofSSMWintheSPentirely.SSMWoutcropsinafreshsurfacetongue(SAsubminA)(seeFig.1).TheshapeofSAsubminApromptedanumberofinvestigatorstoinferawestwardflowatthesouthernrimoftheSPsubtropicalgyre(seeDeacon1977forareview).Suchaflow,incombinationwithcoastalfresh-waterinputandapositivepre
21、cipitation-evaporationbalance,wasthoughttogeneratethesurfacesalinitypatternwithlowestsalinitiesintheeast(Davilaetal.2002;Schneideretal.2003).However,aclearsignalofwestwardflowbetweentheeastward-flowingsubtropicalgyreandtheeastward-flowingextensionoftheACCwasneverdetected.NeshybaandFonseca(1980)suspe
22、ctedtransienteddiescontributedtothewestwardtransportbutdatacoveragewastoosparsetoprovethisidea.InthispaperwestudywatermasstransformationinthesouthernpartoftheSPsubtropicalgyretoexplaintheformationofSAsubmnandSSMW.Afterintroducingthedata,transformationmechanismsformixedlayerandthermoclinewatersaredis
23、cussed.Azonalmixedlayerbudgetisusedtoquantifytheimportanceofair-seaexchangeandadvection.Thentheroleofdiffusioninthewatermasstransformationisdiscussed.TheformationofSAsubminAisexplainedasanadvectivefeature.Last,variabilityofthewatermasstransformationanditsrelationtodecadalvariabilityofthehydrographic
24、structureoftheSPandEquatorialPacificarediscussed.DataTheoceansurfaceandinteriordataproductsusedinthisstudyaremainlythe1990-99averagetemperature,salinity,andvelocityfieldsfromthebeta-7versionofthesimpleoceandataassimilation(SODA)analysis(Cartonetal.2000a,b).SODAinvolvesanoptimalinterpolationassimilat
25、ionofdatainanumericalmodel(theModularOceanModelMOM-2,GFDL,Princeton,NewJersey).Seasurfacetemperature,altimeterseasurfaceheight,andtemperatureandsalinityprofiledataareassimilated.Themodeldomaincoversalloceansbetween60S/Nwithahorizontalresolutionof1xiinlatitude/longitudeinthesubtropics,0.45xiintheTrop
26、ics.Themodelisoptimizedforphysicsoftheupperocean;14ofits20verticallevelsplacedintheupper500m.WewilltreattheSODAanalysisfieldsasupper-oceanclimatologies.Surfacefluxmomentum,evaporation,andprecipitationfieldsaretakenfromtheNationalCentersforEnvironmentalPrediction(NCEP)-NationalCenterforAtmosphericRes
27、earch(NCAR)reanalysis(Kistleretal.2001),whichwasalsousedtogenerateorforcetheSODAanalysis(Cartonetal.2000b).ComparisonstudiesbetweenNCEP-NCARreanalysisdataanddirectobservations(e.g.,Smithetal.2001)foundtheNCEPdatatooverestimatefluxes(latentandsensibleheat)byabout20WmAsup-2a.Thisintroducesanerrorforth
28、enetheatfluxaswellasforthefreshwaterflux(precipitation-evaporationbalance)vialatentheat.Wedecidedtouseboththeoriginaldata(NCEP)andaversionreducedby20WmAsup-2A(NCEP-20W)forthecalculations.Forcomparison,theSouthamptonOceanographicCenter(SOC)air-seafluxfields(Joseyetal.1998;GristandJosey2003)aswellasth
29、edaSilvaetal.(1994a,b)climatologyareused.Botharebasedonobservationaldataandbothclimatologiesareconstrainedviaalinearinverseanalysisusinghydrographicoceanheattransports.Upper-layerhydrographyanddynamicsThehydrographicstructureoftheSPsubtropicalgyreiscomplexincomparisonwiththeotheroceans.Temperature/s
30、alinity(T-S)diagramsofzonalsectionsinthesubtropicsat20Sand30S(Fig.2)inthethreeoceansrevealthattheinterioroftheSPcannotbecharacterizedbyasingleCentralWaterlineasinthesouthernIndianandAtlanticOceans,butshowsmorescatter,mostpronouncedatabout26kgmAsup-3A.ThesouthernIndianandAtlanticOceansarequitesimilar
31、intheirT/Sdistributionsoverthedensityrange26-27kgmAsup-3A,whichmatchesalsothewesternSPcharacteristic.Towardtheeast,however,theSPisconsiderablyfresherandcolderonisopycnalsthantheothertwooceans.Toinvestigatethisfeaturewerecallthemechanismsresponsibleforthetransformationofpropertiesofthemixedlayerandth
32、ewaythemodifiedpropertiesaretransferredintotheinterior(Fig.3).Themixedlayerisdominatedbymixingonvarioustimeandspacescales(see,e.g.,Woods1985).Wateradvectednearthesurfacefromotheroceanregions,suchasthefresherwaterfromtheACCintheSPorrainwater,israpidlyblendedintothemixedlayerandchangeitsproperties.The
33、interiorconnectionwiththemixedlayer,theoutcrop,migratesmeridionallythroughtheseasonalcycleofair-seaexchange,polewardinsummerandequatorwardinwinter.Thismovementisaccompaniedbyaseasonalstratificationunderneaththemixedlayer,theseasonalthermocline.Animportantcontrolsurfaceinthermocline-mixedlayersystemi
34、sthebaseofthedeepestmixedlayer,usuallyfoundinlatewinter.Mostdramaticchangesinthedepthofthemixedlayerbaseusuallyoccurbetweenlatewinterandearlyspring.Thedepthchangetrapswinterpropertiesintheseasonalthermoclineandanetfluxfrommixedlayerintothermoclineoccurs(Stommel1979;Woods1985;Cushman-Roisin1987).Howe
35、ver,exchangeoccursyear-roundandcanhavebothdirections:fluxoutofthemixedlayer(subduction)andintothemixedlayer(obduction;QiuandHuang1995).Thedominantventilationtimescalesofthemixedlayerareseasonal,excludingpossiblelonger-termchangesinthemixedlayertopographyandforcing.Theinterior/thermoclineventilationt
36、imescalesdependonthevolumeofneighboringisopycnalsandtheannualmeansubductionrateintotherespectiveisopycnals.Ventilationtimesofthepermanentthermoclinearelargerthanayear,uptotheorderofdecades.Large-scaleflowinthemixedlayeristhesumofgeostrophicandageostrophiccomponents(e.g.,Wijffelsetal.1994).Theageostr
37、ophiccomponent,mainlytheEkmancurrent,dominatesnearthesurfacebutvanisheswithdepthwherethegeostrophiccomponentgainimportance.TheverticalintegraloftheEkmancurrent,theEkmantransport,constitutestheupperbranchoftheSTCoverlargepartsofthemidlatitudesubtropicalgyres.Atlowlatitudesaninteriorgeostrophicreturnf
38、lowhasalsobeendocumented(Wyrtki1981).AdirectestimateoftheEkmancurrentsandassociatedtransportsispossiblefromacombinationofhydrographicandvelocitymeasurements(see,e.g.,Wijffelsetal.1994).However,ifoneisonlyinterestedintheverticalintegratedtransportcomponents,theycanbederivedfromthemeridionalandzonalwi
39、ndstress(e.g.,Gill1982).Incontrasttothemixedlayer,thethermoclineisdominatedbylateral/isopycnaltransportofproperties,ratherweakcross-isopycnalmixing,andgeostrophicflow.SurfaceforcingandmixedlayerdynamicsWatermasstransformationoccursatboundariesthroughexchangeprocessesorintheinteriorthroughmixing.Mixe
40、dlayerwaterisconstantlytransformedthroughair-seainteraction,lateraladvectioninthemixedlayer,andentrainmentatthemixedlayerbase.StrongestadvectioninthemixedlayeroccursnearthesurfacebyEkmanflow.OverlargepartsofthesubtropicalgyresthewindfieldispredominatelyzonalandconsequentlytheEkmantransportismeridion
41、al(Fig.4a).InthecontextoftheSTC,thezeromeridionalEkmantransportline,locatedintheSPatabout30S(Fig.4a),istheseparatorbetweenhigher-andlower-latitudeoriginofthesurfacewatersparticipatingintheSTC.ThezeromeridionalEkmantransportlinecoincideswithasurfacedensityanomalyofabout25kgmAsup-3A(Fig.4b).Overonesea
42、sonalcycle(oneyear)therelativepositionbetweendensityandzeromeridionalEkmantransportisfairlyfixedintheeastwhileitismorevariableinthewest,changingintheTasmanSeabetween30Sinsummerand40Sinwinter(notshownhere).Thereverseistruefortheseasonalmovementofthesurfaceoutcropdensity(notshownhere):Inthewestitfollo
43、wsthemovementofthezeromeridionalEkmantransport(CkgmAsup-3人)whileintheeastvariabilityishigher(0.5kgMAsup3A).AlthoughthemeridionalEkmantransportdominatesoverlargepartsoftheSP,thezonalEkmantransportplaysaroleintheeasternboundaryupwellingregion.Itadvectsrelativelycoldandsalinewaterfromtheupwellingregion
44、andexplainsthehomogeneousandrelativehighsurfacedensityintheeasternsubtropics(Fig.4b).Oceanheatloss(Fig.4c)isintenseinthewesternboundarycurrentregionandintheTasmanSea.Here,warmtropicalwatersareadvectedpolewardintoregionsunderlyingacolderatmosphere.Highevaporationleadingtohighlatentandsensibleheatloss
45、isaconsequence.iand50Sfromabout20*o80WisasignificantfeaturerelatedtothenorthwardadvectionoffreshandcoldwaterthroughEkmantransportfromthesouthaswellastoapositivefreshwaterflux.Bothadvectionandthepositivefresh-waterfluxpromotetheformationofashallowbarrierlayerinsummer,blockingtheverticalheatexchange,a
46、ndsurfacewaterswarmmoreintensely.Highinterannualvariabilityoftheseasurfacetemperatureinsummerhasbeenobservedinthisregion(A.Montecinos2002,personalcommunication),whichispossiblyrelatedtothevariabilityinbarrier-layerintensity.Thebarrierlayeriserodedinautumn/winterthroughconvectiveoverturningdrivenbyhe
47、atloss.Apositivefreshwaterfluxcanbefoundsouthof30S(Fig.4d)andisconnectedwiththewesternequatorialPacificthroughtheSouthPacificconvergencezone(SPCZ).TheSPCZisaresultofconvergentflowaroundtheIndonesianlowandhighpressureovertheeasternsubtropicalSouthPacific.ThesurfacepatternofEkmantransportaswellasheata
48、ndfreshwaterfluxessuggeststhattheupperbranchoftheSTCcanbesplitintotwotransformationregions:Oneisforwaterdenserthanabout25kgmAsup-3Athatistransformedsouthof30S.Thisbranchwillbediscussedbelowinmoredetail.Thesecondbranchisforwaterlessdensethan25kgmAsup-3Athathasitssourceintheequatorialupwelling.Heremix
49、edlayerwateristransformedthroughthenegativefreshwaterfluxintheeastandthepositivefreshwaterfluxinthewest.Wewillnotdiscussthisbranchindetail.ToillustratehowthewaterparcelsbehaveintheEkmanlayer,trajectorieswerecalculatedforparticlesreleasedat5and53r(Fig.4e).Theaverageoftheuppertwolayervelocitiesfromthe
50、SODAanalysiswasused.TheflowpatternsareoverlargepartsasonewouldexpectfromtheEkmanlayertransport(Fig.4a).Thetrajectoriesareorientedmeridionallyandconvergeat30S.Tworegionsarenotreachedbyparticles:Inthesouthwest,westofNewZealand,particleshavetheiroriginfartherwest,southofAustralia.Thisisinagreementwithw
51、hatweseefromtheinteriorpropertiessuggestingwesternPacificwatertobesimilartothesouthernIndianOceanwater(Fig.2).Theotherexceptionalregionisbetween10and30SintheeasternSP.Themixedlayerhereispopulatedthroughparticlesthatoriginatefromtheeasternboundaryupwelling.FromtheEkmantransportdivergencethemeanvertic
52、alpumpingtermwasderived(Fig.4f).MoreorlessthewholegyreisdominatedbyEkmanpumping.ExceptionsaretheeasternboundaryupwellingregionandundertheSPCZnorthof20S.Ingeneral,EkmanpumpingisstrongernorthofthezeromeridionalEkmantransportline.ExchangesbetweenmixedlayerandthermoclineThemixedlayerisnotonlymodifiedthr
53、oughair-seaexchangeandadvection,butalsothroughthenetexportofwaterthroughsubductionatthebaseofthemixedlayer(Fig.3).EarlierSPstudies(deSzoeke1987;HuangandQiu1998;KarstensenandQuadfasel2002)haveshownthatinourregionofinterest,southof30S,thesubtropicalgyreisdominatedbysubduction.Consequentlyweconsiderint
54、hefollowingonlythenetexport.SubductionintheSPhasbeenanalyzedbydeSzoeke(1987)basedontheclassicalLuytenetal.(1983)model,whichaccountsforanEkman-pumping-drivensubductiononly(cf.Fig.4f).Laterstudiesconsideredtheseasonalmixedlayervariability(HuangandQiu1998;KarstensenandQuadfasel2002).However,fordensitya
55、nomaliessmallerthan26.6kgmAsup-3人transportsaresimilarinallpublicationsandoforder25Sv(Sv=10Asup6AmAsup3AsAsup-1A).-3人,twosubductionregionsareidentified.BothincorporateequatorialupwellingaswellaswaterfromsouthofthezeromeridionalEkmantransportline.IntheTasmanSea,inthewest,waterwithanearlyconstantsalini
56、tyof35.5andtemperaturesbetween15and25subducted.PartofthewaterhasbeencalledSouthPacificSubtropicalModeWater(RoemmichandCornuelle1992)althoughSouthPacificWesternSubtropicalModeWater(SPWSTMW)appearstobemoreappropriatetodistinguishitfromitseasterncounterpart.ThesubductedwatersdenserthanSPWSTMWresembleth
57、eT-SpropertiesoftheothertwoSouthernHemispheregyres(Fig.2).WithinthemodewaterdensityrangebutintheeasternSP,ventilationoccursoveramuchwiderrangeofsalinitiesfrom34to36.5andtemperaturesfrom10o25C,buttheytendtocompensateindensity.Notetheweaksurfacedensitygradientatthesurface(Fig.4b).Watersubductedinthisr
58、egionhasbeentermedSouthPacificEasternSubtropicalModeWater(SPESTMW;HanawaandTalley2001;WongandJohnson2003)and,asitswesterncounterpart,incorporatesequatorialandsouthernsourcewaters.Last,athirdsubductionregionislocatedatthesouthernrimoftheSPsubtropicalgyre.Here,mixedlayerwaterwithcharacteristicsinbetwe
59、enwesternandeasternwaterissubductedand,aswillbeshownbelow,modifiestheinteriorpropertiesthroughlateraldiffusion.Foreachregionwestern(S1),eastern(S2),andsouthern(S3)(Fig.6),theannualmeansubductionrate(SAsubannA)wasevaluatedfromananalysisoftheverticalvelocitiesatthebaseofthewintermixedlayer(H)(Marshall
60、etal.1993):SAsubannA=-wAsub屮-uAsub屮?H.isH).Twocontributionsmakeuptheannualmeansubduction:1)thecorrectedEkmanpumpingterm(-WAsubHA),whichincorporatesacorrectionforthemeridionalbarotropicforcingofthemixedlayerthroughthewind(Williams1989),and2)thecomponentofthehorizontalgeostrophicflowperpendiculartothe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 認(rèn)識(shí)人民幣小學(xué)數(shù)學(xué)教案
- 高中物理必修三教案6篇
- 幼師職業(yè)生涯規(guī)劃書(shū)
- 食堂年終工作總結(jié)(19篇)
- 英文在職證明模版
- DB12-T 1061-2021 律師民事訴訟文書(shū)格式
- 2024-2025學(xué)年重慶烏江新高考協(xié)作體高三上學(xué)期二調(diào)生物試題及答案
- 上海市縣(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)人教版開(kāi)學(xué)考試(下學(xué)期)試卷及答案
- 五年級(jí)數(shù)學(xué)(小數(shù)乘法)計(jì)算題專(zhuān)項(xiàng)練習(xí)及答案匯編
- 荊楚理工學(xué)院《軟件測(cè)試》2022-2023學(xué)年期末試卷
- 園林專(zhuān)業(yè)大學(xué)生職業(yè)生涯規(guī)劃
- 第四章 學(xué)前兒童記憶的發(fā)展
- 胰島素自身免疫綜合征個(gè)案護(hù)理
- 對(duì)數(shù)的運(yùn)算完整版本
- 選煤企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化課件
- 國(guó)家開(kāi)放大學(xué)兒童發(fā)展問(wèn)題的咨詢與輔導(dǎo)形考周測(cè)驗(yàn)三周-周參考答案
- 就業(yè)引航筑夢(mèng)未來(lái)
- 電子信息工程專(zhuān)業(yè)大學(xué)生生涯發(fā)展展示
- 生豬買(mǎi)賣(mài)合同
- 跨境電商營(yíng)銷(xiāo)(第2版 慕課版)教案 項(xiàng)目五 社會(huì)化媒體營(yíng)銷(xiāo)
- 【年產(chǎn)5000噸氯化苯的工藝設(shè)計(jì)11000字(論文)】
評(píng)論
0/150
提交評(píng)論