2021-2022學年吉林省吉林市蛟河市高考數(shù)學三模試卷含解析_第1頁
2021-2022學年吉林省吉林市蛟河市高考數(shù)學三模試卷含解析_第2頁
2021-2022學年吉林省吉林市蛟河市高考數(shù)學三模試卷含解析_第3頁
2021-2022學年吉林省吉林市蛟河市高考數(shù)學三模試卷含解析_第4頁
2021-2022學年吉林省吉林市蛟河市高考數(shù)學三模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考試結束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目

2、要求的。1若函數(shù)()的圖象過點,則( )A函數(shù)的值域是B點是的一個對稱中心C函數(shù)的最小正周期是D直線是的一條對稱軸2已知直線過圓的圓心,則的最小值為( )A1B2C3D43設分別為的三邊的中點,則( )ABCD4己知全集為實數(shù)集R,集合A=x|x2 +2x-80,B=x|log2x0,得x-4或x2,A=x|x2 +2x-80 x| x-4或x2,由log2x1,x0,得0 x2,B=x|log2x1 x |0 x2,則,.故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎題.5C【解析】由題意,可根據(jù)向量運算法則得到(1m),從而由向量分解的唯一性

3、得出關于t的方程,求出t的值.【詳解】由題意及圖,又,所以,(1m),又t,所以,解得m,t,故選C【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.6B【解析】計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.7B【解析】,選B.8C【解析】分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的

4、不是甲;假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不

5、會發(fā)生,考查了分析能力和推理能力,屬于中檔題.9A【解析】試題分析:,所以,即集合中共有3個元素,故選A考點:集合的運算10D【解析】直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.11C【解析】利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎題.12A【解析】根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關系可確定結

6、果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可【詳解】由知,當時,在和上單調(diào)遞增,在和上均單調(diào)遞增,的取值范圍為:故答案為:【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關鍵是根據(jù)函數(shù)的單調(diào)性列出關于m的方程組,屬中檔題14【解析】設直線的方程為,與聯(lián)立得到A點坐標,由得,代入可得,即得解.【詳解

7、】由題意,直線的方程為,與聯(lián)立得,由得,從而,即,從而離心率故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.15【解析】根據(jù)交集的定義即可寫出答案?!驹斀狻?,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎題。16【解析】先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在BOD中,BD2,易知O的軌跡為阿氏圓,其半徑,故故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉(zhuǎn)化是求解的關鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).三、解答

8、題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2)20【解析】(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數(shù)分別為,從而,則.【點睛】本題考查了極坐標方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道容易題.18(1);(2)【解析】(1)設,根據(jù)題意可得點的軌跡方程滿足的等式,化簡即可求得動點的軌跡的方程;(2)設出切線的斜率分別為,切點,點,則可得過點的拋物線的切線方程為,聯(lián)立拋物線方程并化簡,由

9、相切時可得兩條切線斜率關系;由拋物線方程求得導函數(shù),并由導數(shù)的幾何意義并代入拋物線方程表示出,可求得,結合點滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設點,點到直線的距離等于,化簡得,動點的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設為,切點,設點,過點的拋物線的切線方程為,聯(lián)立,化簡可得,即,.由,求得導函數(shù),因為點滿足,由圓的性質(zhì)可得,即直線斜率的取值范圍為.【點睛】本題考查了動點軌跡方程的求法,直線與拋物線相切的性質(zhì)及應用,導函數(shù)的幾何意義及應用,點和圓位置關系求參數(shù)的取值范圍,屬于中檔題.19(1);(2)【解析】(1)由三角形面積公式,平面向量數(shù)量積的運算可得,

10、結合范圍,可求,進而可求的值(2)利用同角三角函數(shù)基本關系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值【詳解】解:(1)由,得,因為,所以,可得:(2)中,所以.所以:,由正弦定理,得,解得,【點睛】本題主要考查了三角形面積公式,平面向量數(shù)量積的運算,同角三角函數(shù)基本關系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題20(1)見解析(2)【解析】(1)第(1)問,連交于,連接.證明/ ,即證平面. (2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知 又為的中點,為的重心,在中

11、, ,故/ .又平面, 平面, 平面.方法二:過作交PD于N,過F作FM|AD交CD于M,連接MN, G為PAD的重心,又ABCD為梯形,AB|CD,又由所作GN|AD,FM|AD,得/ ,所以GNMF為平行四邊形.因為GF|MN, (2) 方法一:由平面平面, 與均為正三角形, 為的中點, ,得平面,且 由(1)知/平面, 又由梯形ABCD,AB|CD,且,知 又為正三角形,得,得三棱錐的體積為. 方法二: 由平面平面, 與均為正三角形, 為的中點, ,得平面,且由, 而又為正三角形,得,得.,三棱錐的體積為.21 (1) ;(2).【解析】(1)平面平面,建立坐標系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1) 如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2) 設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角, 平面與平面垂直的判定,二面角的平面角及求法,難度一般.22()(t為參數(shù));()或或.【解析】試題分析: 本題主要考查極坐標方程、參數(shù)方程與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論