版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,兩個菱形,兩個等邊三角形,兩個矩形,兩個正方形,各成一組,每組中的一個圖形在另一個圖形的內(nèi)部,對應(yīng)邊平行,且對應(yīng)邊之間的距離都相等,那么兩個圖形不相似的一組是()A. B. C. D.2.將拋物線y=-2x2向左平移3個單位,再向下平移4個單位,所得拋物線為()A. B.C. D.3.如圖是我們學(xué)過的反比例函數(shù)圖象,它的表達(dá)式可能是()A. B. C. D.4.如果兩個相似多邊形的面積之比為,那么它們的周長之比是()A. B. C. D.5.一個不透明的袋子中裝有21個紅球和若干個白球,這些球除了顏色外都相同,若小英每次從袋子中隨機摸出一個球,記下顏色后再放回,經(jīng)過多次重復(fù)試驗,小英發(fā)現(xiàn)摸到紅球的頻率逐漸穩(wěn)定于1.4,則小英估計袋子中白球的個數(shù)約為()A.51 B.31 C.12 D.86.如圖,點,,均在坐標(biāo)軸上,,過,,作,是上任意一點,連結(jié),,則的最大值是()A.4 B.5 C.6 D.7.下列事件中,是隨機事件的是()A.兩條直線被第三條直線所截,同位角相等B.任意一個四邊形的外角和等于360°C.早上太陽從西方升起D.平行四邊形是中心對稱圖形8.如圖,二次函數(shù)的圖象過點,下列說法:①;②;③若是拋物線上的兩點,則;④當(dāng)時,.其中正確的個數(shù)為()
A.4 B.3 C.2 D.19.已知二次函數(shù)y=(a≠0)的圖像如圖所示,對稱軸為x=-1,則下列式子正確的個數(shù)是()(1)abc>0(2)2a+b=0(3)4a+2b+c<0(4)b2-4ac<0A.1個 B.2個 C.3個 D.4個10.下列圖形中是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個11.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.12.如圖,中,,,,分別為邊的中點,將繞點順時針旋轉(zhuǎn)到的位置,則整個旋轉(zhuǎn)過程中線段所掃過部分的面積(即陰影部分面積)為()A. B. C. D.二、填空題(每題4分,共24分)13.把一袋黑豆中放入紅豆100粒,攪勻后取出100粒豆子,其中紅豆5粒,則該袋中約有黑豆_______粒.14.如圖,在中,,于點D,于點E,F(xiàn)、G分別是BC、DE的中點,若,則FG的長度為__________.15.如圖,在中,,于,已知,則__________.16.當(dāng)a≤x≤a+1時,函數(shù)y=x2﹣2x+1的最小值為1,則a的值為_____.17.如圖,身高為1.7m的小明AB站在小河的一岸,利用樹的倒影去測量河對岸一棵樹CD的高度,CD在水中的倒影為C′D,A、E、C′在一條線上.如果小河BD的寬度為12m,BE=3m,那么這棵樹CD的高為_____m.18.在中,,,,則的長是__________.三、解答題(共78分)19.(8分)我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長.20.(8分)用配方法解一元二次方程21.(8分)如圖,有一個三等分?jǐn)?shù)字轉(zhuǎn)盤,小紅先轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,小芳后轉(zhuǎn)動轉(zhuǎn)盤,指針指向的數(shù)字記下為,從而確定了點的坐標(biāo),(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向數(shù)字為止)(1)小紅轉(zhuǎn)動轉(zhuǎn)盤,求指針指向的數(shù)字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結(jié)果.(3)求點在函數(shù)圖象上的概率.22.(10分)(1)①如圖1,請用直尺(不帶刻度)和圓規(guī)作出的內(nèi)接正三角形(按要求作圖,不要求寫作法,但要保留作圖痕跡).②若的內(nèi)接正三角形邊長為6,求的半徑;(2)如圖2,的半徑就是(1)中所求半徑的值.點在上,是的切線,點在射線上,且,點從點出發(fā),以每秒1個單位的速度沿射線方向移動,點是上的點(不與點重合),是的切線.設(shè)點運動的時間為(秒),當(dāng)為何值時,是直角三角形,請你求出滿足條件的所有值.23.(10分)如圖,在一筆直的海岸線上有A,B兩觀景臺,A在B的正東方向,BP=5(單位:km),有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(1)求A、B兩觀景臺之間的距離;(2)小船從點P處沿射線AP的方向進(jìn)行沿途考察,求觀景臺B到射線AP的最短距離.(結(jié)果保留根號)24.(10分)某校體育組為了解全校學(xué)生“最喜歡的一項球類項目”,隨機抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖回答下列問題:(1)請補全條形統(tǒng)計圖(圖2);(2)在扇形統(tǒng)計圖中,“籃球”部分所對應(yīng)的圓心角是____________度?(3)籃球教練在制定訓(xùn)練計劃前,將從最喜歡籃球項目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.25.(12分)如圖,在?ABCD中過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.(1)求證:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的長.26.如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.(1)求拋物線的解析式;(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)相似多邊形的性質(zhì)逐一進(jìn)行判斷即可得答案.【詳解】由題意得,A.菱形四條邊均相等,所以對應(yīng)邊成比例,對應(yīng)邊平行,所以角也相等,所以兩個菱形相似,B.等邊三角形對應(yīng)角相等,對應(yīng)邊成比例,所以兩個等邊三角形相似;C.矩形四個角相等,但對應(yīng)邊不一定成比例,所以B中矩形不是相似多邊形D.正方形四條邊均相等,所以對應(yīng)邊成比例,四個角也相等,所以兩個正方形相似;故選C.【點睛】本題考查相似多邊形的判定,其對應(yīng)角相等,對應(yīng)邊成比例.兩個條件缺一不可.2、B【解析】根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.【詳解】解:把拋物線y=-2x2先向左平移3個單位,再向下平移4個單位,所得的拋物線的解析式是y=-2(x+3)2-4,故選:B.【點睛】本題主要考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.3、B【分析】根據(jù)反比例函數(shù)圖象可知,經(jīng)過第一三象限,,從而得出答案.【詳解】解:A、為二次函數(shù)表達(dá)式,故A選項錯誤;B、為反比例函數(shù)表達(dá)式,且,經(jīng)過第一三象限,符合圖象,故B選項正確;C、為反比例函數(shù)表達(dá)式,且,經(jīng)過第二四象限,不符合圖象,故C選項錯誤;D、為一次函數(shù)表達(dá)式,故D選項錯誤.故答案為B.【點睛】本題考查了反比例函數(shù)的圖象的識別,掌握反比例函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.4、A【分析】根據(jù)相似多邊形周長的比等于相似比,面積的比等于相似比的平方進(jìn)行解答即可.【詳解】解:∵兩個相似多邊形面積的比為,
∴兩個相似多邊形周長的比等于,
∴這兩個相似多邊形周長的比是.
故選:A.【點睛】本題考查的是相似多邊形的性質(zhì),即相似多邊形周長的比等于相似比,面積的比等于相似比的平方.5、B【分析】設(shè)白球個數(shù)為個,白球數(shù)量袋中球的總數(shù)=1-14=1.6,求得【詳解】解:設(shè)白球個數(shù)為個,根據(jù)題意得,白球數(shù)量袋中球的總數(shù)=1-14=1.6,所以,解得故選B【點睛】本題主要考查了用評率估計概率.6、C【分析】連接,,如圖,利用圓周角定理可判定點在上,易得,,,,,設(shè),則,由于表示點到原點的距離,則當(dāng)為直徑時,點到原點的距離最大,由于為平分,則,利用點在圓上得到,則可計算出,從而得到的最大值.【詳解】解:連接,,如圖,,為的直徑,點在上,,,,,,,設(shè),,而表示點到原點的距離,當(dāng)為直徑時,點到原點的距離最大,為平分,,,,即,此時,即的最大值是1.故選:.【點睛】本題考查了點與圓的位置關(guān)系、圓周角定理、勾股定理等,作出輔助線,得到是解題的關(guān)鍵.7、A【分析】根據(jù)隨機事件的概念對每一事件進(jìn)行分析.【詳解】選項A,只有當(dāng)兩條直線為平行線時,同位角才相等,故不確定為隨機事件.選項B,不可能事件.選項C,不可能事件選項D,必然事件.故選A【點睛】本題考查了隨機事件的概念.8、B【分析】根據(jù)二次函數(shù)的性質(zhì)對各項進(jìn)行判斷即可.【詳解】A.∵函數(shù)圖象過點,∴對稱軸為,可得,正確;B.∵,∴當(dāng),,正確;C.根據(jù)二次函數(shù)的對稱性,的縱坐標(biāo)等于的縱坐標(biāo),∵,所以,錯誤;D.由圖象可得,當(dāng)時,,正確;故答案為:B.【點睛】本題考查了二次函數(shù)的問題,掌握二次函數(shù)的圖象以及性質(zhì)是解題的關(guān)鍵.9、B【詳解】由圖像可知,拋物線開口向下,a<0,圖像與y軸交于正半軸,c>0,對稱軸為直線x=-1<0,即-<0,因為a<0,所以b<0,所以abc>0,故(1)正確;由-=-1得,b=2a,即2a-b=0,故(2)錯誤;由圖像可知當(dāng)x=2時,y<0,即4a+2b+c<0,故(3)正確;該圖像與x軸有兩個交點,即b2-4ac>0,故(4)錯誤,本題正確的有兩個,故選B.10、B【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,進(jìn)行判斷.【詳解】從左起第2、4個圖形是中心對稱圖形,故選B.【點睛】本題考查了中心對稱圖形的概念,注意掌握圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合.11、C【分析】由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.【詳解】∵∠A是公共角,∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.12、C【分析】連接BH,BH1,先證明△OBH≌△O1BH1,再根據(jù)勾股定理算出BH,再利用扇形面積公式求解即可.【詳解】∵O、H分別為邊AB,AC的中點,將△ABC繞點B順時針旋轉(zhuǎn)120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面積公式可得.故選C.【點睛】本題考查全等三角形的判定及性質(zhì)、勾股定理、扇形面積的計算,利用全等對面積進(jìn)行等量轉(zhuǎn)換方便計算是關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】先根據(jù)取出100粒豆子,其中有紅豆5粒,確定取出紅豆的概率為5%,然后用100÷5%求出豆子總數(shù),最后再減去紅豆子數(shù)即可.【詳解】解:由題意得:取出100粒豆子,紅豆的概率為5%,則豆子總數(shù)為100÷5%=2000粒,所以該袋中黑豆約有2000-100=1粒.故答案為1.【點睛】本題考查了用頻率估計概率,弄清題意、學(xué)會用樣本估計總體的方法是解答本題的關(guān)鍵.14、1【分析】連接EF、DF,根據(jù)直角三角形的性質(zhì)得到EF=BC=20,得到FE=FD,根據(jù)等腰三角形的性質(zhì)得到FG⊥DE,GE=GD=DE=12,根據(jù)勾股定理計算即可.【詳解】解:連接EF、DF,
∵BD⊥AC,F(xiàn)為BC的中點,
∴DF=BC=20,
同理,EF=BC=20,
∴FE=FD,又G為DE的中點,
∴FG⊥DE,GE=GD=DE=12,由勾股定理得,F(xiàn)G==1,故答案為:1.【點睛】本題考查的是直角三角形的性質(zhì)、等腰三角形的性質(zhì),掌握在直角三角形中,斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.15、【分析】根據(jù),可設(shè)AC=4x,BC=5x,利用勾股定理可得AB=3x,則.【詳解】在Rt△ABC中,∵∴設(shè)AC=4x,BC=5x∴∴故答案為:.【點睛】本題考查求正切值,熟練掌握三角函數(shù)的定義是解題的關(guān)鍵.16、2或﹣2【解析】利用二次函數(shù)圖象上點的坐標(biāo)特征找出當(dāng)y=2時x的值,結(jié)合當(dāng)a≤x≤a+2時函數(shù)有最小值2,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】當(dāng)y=2時,有x2﹣2x+2=2,解得:x2=0,x2=2.∵當(dāng)a≤x≤a+2時,函數(shù)有最小值2,∴a=2或a+2=0,∴a=2或a=﹣2,故答案為:2或﹣2.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點的坐標(biāo)特征找出當(dāng)y=2時x的值是解題的關(guān)鍵.17、5.1.【解析】試題分析:根據(jù)題意可知:BE=3m,DE=9m,△ABE∽△CDE,則,即,解得:CD=5.1m.點睛:本題注意考查的就是三角形相似實際應(yīng)用的題目,難度在中等.在利用三角形相似,我們一般都是用來測量較高物體或無法直接測量的物體的高度,解決這種題目的時候,我們首先要找到有哪兩個三角形相似,然后根據(jù)相似三角形的邊成比例得出位置物體的高度.18、1【分析】根據(jù)∠A的余弦值列出比例式即可求出AC的長.【詳解】解:在Rt△ABC中,,∴AC=故答案為1.【點睛】此題考查是已知一個角的余弦值,求直角三角形的邊長,掌握余弦的定義是解決此題的關(guān)鍵.三、解答題(共78分)19、(1)10,6;(2)見解析;(3).【分析】(1)根據(jù)“十字弦”定義可得弦的“十字弦”為直徑時最大,當(dāng)CD過A點或B點時最??;(2)根據(jù)線段長度得出對應(yīng)邊成比例且有夾角相等,證明△ACH∽△DCA,由其性質(zhì)得出對應(yīng)角相等,結(jié)合90°的圓周角證出AH⊥CD,根據(jù)“十字弦”定義可得;(3)過O作OE⊥AB于點E,作OF⊥CD于點F,利用垂徑定理得出OE=3,由正切函數(shù)得出AH=DH,設(shè)DH=x,在Rt△ODF中,利用線段和差將邊長用x表示,根據(jù)勾股定理列方程求解.【詳解】解:(1)當(dāng)CD為直徑時,CD最大,此時CD=10,∴弦的“十字弦”的最大值為10;當(dāng)CD過A點時,CD長最小,即AM的長度,過O點作ON⊥AM,垂足為N,作OG⊥AB,垂足為G,則四邊形AGON為矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)證明:如圖,連接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直徑,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互為“十字弦”.(3)如圖,過O作OE⊥AB于點E,作OF⊥CD于點F,連接OA,OD,則四邊形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,設(shè)DH=,則AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=【點睛】本題考查圓的相關(guān)性質(zhì),利用垂徑定理,相似三角形等知識是解決圓問題的常用手段,對結(jié)合學(xué)過的知識和方法的基礎(chǔ)上,用新的方法和思路來解決新題型或新定義的能力是解答此題的關(guān)鍵.20、,【分析】根據(jù)配方法解一元二次方程的步驟,解方程即可.【詳解】解:移項得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【點睛】本題考查了配方法解一元二次方程,正確配方是解題的關(guān)鍵:“當(dāng)二次項系數(shù)為1時,方程兩邊同時加一次項系數(shù)一半的平方”.21、(1);(2)見解析,共9種,;(3)【分析】(1)轉(zhuǎn)動一次有三種可能,出現(xiàn)數(shù)字2只有一種情況,據(jù)此可得出結(jié)果;
(2)根據(jù)題意列表或畫樹狀圖即可得出所有可能的結(jié)果;(3)可以得出只有(1,2)、(2,3)在函數(shù)的圖象上,即可求概率.【詳解】解:(1)根據(jù)題意可得,指針指向的數(shù)字2的概率為;(2)列表,得:或畫樹狀圖,得:由列表或樹狀圖可得可能的情況共有9種,分別為:;(3)解:由題意以及(2)可知:滿足的有:,∴點在函數(shù)y=x+1圖象上的概率為.【點睛】本題考查一次函數(shù)的圖象上的點,等可能事件的概率;能夠列出表格或樹狀圖是解題的關(guān)鍵.22、(1)①見解析;②;(2).【分析】(1)①作半徑的垂直平分線與圓交于,再取,則即為正三角形;②連接,設(shè)半徑為,利用勾股定理即可求得答案;(2)分當(dāng),且點在點左側(cè)或右側(cè),時四種情況討論,當(dāng)時,在Rt中利用勾股定理求解即可;當(dāng)且點在點左側(cè)或右側(cè)時,構(gòu)造矩形和直角三角形,利用解直角三角形即可求解;當(dāng)時,構(gòu)造正方形和直角三角形即可求解.【詳解】(1)①等邊如圖所示;②連接,如圖,設(shè)半徑為,由作圖知:,⊥,∴,在中,,即,解得:;(2)當(dāng)時,連接,如圖,∵QG是的切線,∴,∵,∴三點共線,又∵DF是的切線,∴,設(shè)點運動的時間為(秒),∴,在中,,,∴,在Rt中,,,,∴,即,解得:;當(dāng),且點在點左側(cè)時,連接,過點G作GM⊥OD于M,如圖,∵是的切線,∴,∴四邊形DFGM為矩形,∴,在Rt中,,,∴,∵,∴,∵QG是的切線,四邊形DFGM為矩形,∴,∴在Rt中,,,∴即解得:;當(dāng)時,連接,如圖,∵是的切線,QG是的切線,∴,,∴四邊形ODQG為正方形,∴,∴;當(dāng),且點在點左側(cè)時,連接,過點O作ON⊥于N,如圖,∵是的切線,∴,∴四邊形DFNO為矩形,∴,在Rt中,,,∴,∵,∴,∴,,∴,∵QG是的切線,,∴,∴,∴,∴;綜上:當(dāng)、、、時,是直角三角形.【點睛】本題考查了圓的綜合題,涉及到的知識有:簡單作圖,勾股定理,切線的性質(zhì),矩形的判定和性質(zhì),正方形的判定和性質(zhì),解直角三角形,構(gòu)造合適的輔助線是解題的關(guān)鍵.23、(1)A、B兩觀景臺之間的距離為=(5+5)km;(2)觀測站B到射線AP的最短距離為()km.【分析】(1)過點P作PD⊥AB于點D,先解Rt△PBD,得到BD和PD的長,再解Rt△PAD,得到AD和AP的長,然后根據(jù)BD+AD=AB,即可求解;
(2)過點B作BF⊥AC于點F,解直角三角形即可得到結(jié)論.【詳解】解:(1)如圖,過點P作PD⊥AB于點D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=BP=5km.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=5km,PA=1.∴AB=BD+AD=(5+5)km;答:A、B兩觀景臺之間的距離為=(5+5)km;(2)如圖,過點B作BF⊥AC于點F,則∠BAP=30°,∵AB=(5+5),∴BF=AB=()km.答:觀測站B到射線AP的最短距離為()km.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中.通過作輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.24、(1)見解析;(2)144;(3)【分析】(1)先利用喜歡足球的人數(shù)和它所占的百分比計算出調(diào)查的總?cè)藬?shù),再計算出喜歡乒乓球的人數(shù),然后補全條形統(tǒng)計圖;
(2)用360°乘以喜歡籃球人數(shù)所占的百分比即可;
(3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽取的兩人恰好是甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)調(diào)查的總?cè)藬?shù)為8÷16%=50(人),
喜歡乒乓球的人數(shù)為50-8-20-6-2=14(人),補全條形統(tǒng)計圖如下:
(2)“籃球”部分所對應(yīng)的圓心角=360×40%=144°;
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中抽取的兩人恰好是甲和乙的結(jié)果數(shù)為2,
所以抽取的兩人恰好是甲和乙的概率:.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及列表法與樹狀圖法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.25、(1)證明見解析;(2).【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,證出∠C=∠AFB,即可得出結(jié)論;(2)由勾股定理求出BE,由三角函數(shù)求出AE,再由相似三角形的性質(zhì)求出AF的長.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=,在Rt△ADE中,AE=AD?sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.考點:相似三角形的判定與性質(zhì);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年開發(fā)區(qū)綜合招商代理合作合同版
- 繪本故事托班課程設(shè)計
- 英語初中閱讀課課程設(shè)計
- 稅收籌劃課程設(shè)計進(jìn)度
- 主治醫(yī)師資格(全科醫(yī)學(xué)301)考試題庫(全真題庫)
- 美麗小蠻腰雕刻課程設(shè)計
- 職業(yè)課程設(shè)計中的問題
- 游戲美術(shù)課程設(shè)計
- 職工培訓(xùn)課程設(shè)計
- 汽車行業(yè)維修技能培訓(xùn)總結(jié)
- DB31T 1238-2020 分布式光伏發(fā)電系統(tǒng)運行維護管理規(guī)范
- 化妝品不良反應(yīng)監(jiān)測培訓(xùn)課件
- 分包計劃范文
- 個人住房質(zhì)押擔(dān)保借款合同書范本(3篇)
- 亞馬遜品牌授權(quán)書(英文模板)
- DB52∕T 046-2018 貴州省建筑巖土工程技術(shù)規(guī)范
- 醫(yī)療電子票據(jù)管理系統(tǒng)建設(shè)方案
- 火箭發(fā)動機課件-
- 人教版小學(xué)六年級數(shù)學(xué)上冊教學(xué)反思(46篇)
- atv61變頻器中文手冊
- 農(nóng)業(yè)機械維修業(yè)開業(yè)技術(shù)條件
評論
0/150
提交評論