2022年貴州省黔南州甕安縣中考五模數(shù)學試題含解析_第1頁
2022年貴州省黔南州甕安縣中考五模數(shù)學試題含解析_第2頁
2022年貴州省黔南州甕安縣中考五模數(shù)學試題含解析_第3頁
2022年貴州省黔南州甕安縣中考五模數(shù)學試題含解析_第4頁
2022年貴州省黔南州甕安縣中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.2.如圖,任意轉(zhuǎn)動正六邊形轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針指向大于3的數(shù)的概率是()A. B. C. D.3.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°4.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.5.二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.6.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.7.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°8.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能圍成正方體的位置是()A.① B.② C.③ D.④9.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學計數(shù)法表示為()A. B. C. D.10.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣1二、填空題(本大題共6個小題,每小題3分,共18分)11.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應(yīng)點C'的坐標為_____.12.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.13.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.14.方程3x(x-1)=2(x-1)的根是15.計算:-=________.16.已知圓錐的底面半徑為3cm,側(cè)面積為15πcm2,則這個圓錐的側(cè)面展開圖的圓心角°.三、解答題(共8題,共72分)17.(8分)如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.求證:△AED≌△EBC;當AB=6時,求CD的長.18.(8分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中所給信息解答下列問題:(1)本次共調(diào)查名學生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學生,根據(jù)以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調(diào)查,數(shù)學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內(nèi)的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.19.(8分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點.求反比例函數(shù)的表達式在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標求△PAB的面積.20.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.21.(8分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.22.(10分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結(jié)果提前5天完成任務(wù),原計劃每天種多少棵樹?23.(12分)如圖,在平面直角坐標系中,一次函數(shù)y=﹣x+2的圖象交x軸于點P,二次函數(shù)y=﹣x2+x+m的圖象與x軸的交點為(x1,0)、(x2,0),且+=17(1)求二次函數(shù)的解析式和該二次函數(shù)圖象的頂點的坐標.(2)若二次函數(shù)y=﹣x2+x+m的圖象與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(點A在點B的左側(cè)),在x軸上是否存在點M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請求出點M的坐標;若不存在,請說明理由.24.為了弘揚學生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質(zhì)和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經(jīng)過老師與同學們商量,用所學的概率知識設(shè)計摸球游戲決定誰去,設(shè)計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.2、D【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:∵共6個數(shù),大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.3、C【解析】

根據(jù)平行線的性質(zhì),可得的度數(shù),再根據(jù)以及平行線的性質(zhì),即可得出的度數(shù).【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質(zhì)的運用,解題時注意:兩直線平行,同旁內(nèi)角互補,且內(nèi)錯角相等.4、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.5、D【解析】

由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結(jié)合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.6、C【解析】

根據(jù)中心對稱圖形的概念進行分析.【詳解】A、不是中心對稱圖形,故此選項錯誤;

B、不是中心對稱圖形,故此選項錯誤;

C、是中心對稱圖形,故此選項正確;

D、不是中心對稱圖形,故此選項錯誤;

故選:C.【點睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點:解直角三角形的應(yīng)用.8、A【解析】

由平面圖形的折疊及正方體的表面展開圖的特點解題.【詳解】將圖1的正方形放在圖2中的①的位置出現(xiàn)重疊的面,所以不能圍成正方體,故選A.【點睛】本題考查了展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形.注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.9、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】數(shù)據(jù)0.000000007用科學記數(shù)法表示為7×10-1.故選A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).12、【解析】

如圖,作OH⊥CD于H,連結(jié)OC,根據(jù)垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據(jù)含30°的直角三角形的性質(zhì)計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結(jié)OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質(zhì),解此題的關(guān)鍵在于作輔助線得到直角三角形,再合理利用各知識點進行計算即可13、25°或40°或10°【解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據(jù)等腰三角形的性質(zhì)求出∠ADB,再求出∠BDC,然后根據(jù)等腰三角形兩底角相等列式計算即可得解.【詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數(shù)可以為25°或40°或10°故答案為25°或40°或10°【點睛】本題考查了等腰三角形的性質(zhì),難點在于分情況討論.14、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.15、2【解析】試題解析:原式故答案為16、1【解析】試題分析:根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長,再結(jié)合扇形面積即可求出圓心角的度數(shù).解:∵側(cè)面積為15πcm2,∴圓錐側(cè)面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側(cè)面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.三、解答題(共8題,共72分)17、(1)證明見解析;(2)CD=3【解析】分析:(1)根據(jù)二直線平行同位角相等得出∠A=∠BEC,根據(jù)中點的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;(2)根據(jù)全等三角形對應(yīng)邊相等得出AD=EC,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據(jù)平行四邊形的對邊相等得出答案.詳解:(1)證明:∵AD∥EC∴∠A=∠BEC∵E是AB中點,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四邊形AECD是平行四邊形∴CD=AE∵AB=6∴CD=AB=3點睛:本題考查全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型.18、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調(diào)查的總?cè)藬?shù),用C的人數(shù)除以調(diào)查的總?cè)藬?shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調(diào)查的學生總?cè)藬?shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中甲和乙兩名學生同時被選中的結(jié)果數(shù)為2,所以甲和乙兩名學生同時被選中的概率為.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關(guān)聯(lián)的信息進行解題是關(guān)鍵.19、(1)反比例函數(shù)的表達式y(tǒng)=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數(shù)中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數(shù)的表達式;(2)作點D關(guān)于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數(shù)法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

點A(1,3)代入反比例函數(shù)y=,

得k=3,

∴反比例函數(shù)的表達式y(tǒng)=,

(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,

∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,

把A,D兩點代入得,,

解得m=﹣2,n=1,

∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,

∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結(jié)合在一起來求有關(guān)于最值方面的問題.此類問題的重點是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標,為接下來求面積做好鋪墊.20、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設(shè)AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的綜合運用,用了方程思想.21、(1);(2).【解析】

(1)將(-1,0)和(0,3)兩點代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;

(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個交點的坐標,進而求出當函數(shù)值y>0時,自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過和兩點,得,解這個方程組,得,拋物線的解析式為,(2)令,得.解這個方程,得,.∴此二次函數(shù)的圖象與軸的另一個交點的坐標為.當時,.【點睛】本題考查的知識點是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點,解題的關(guān)鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標軸的交點.22、原計劃每天種樹40棵.【解析】

設(shè)原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關(guān)系建立方程求出其解即可.【詳解】設(shè)原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經(jīng)檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.23、(1)y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,點M(,0).理由見解析.【解析】

(1)由根與系數(shù)的關(guān)系,結(jié)合已知條件可得9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論