2023屆安徽省安慶宿松縣聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2023屆安徽省安慶宿松縣聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2023屆安徽省安慶宿松縣聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2023屆安徽省安慶宿松縣聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2023屆安徽省安慶宿松縣聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列標(biāo)志中是中心對稱圖形的是()A. B. C. D.2.順次連接菱形各邊中點得到的四邊形一定是()A.菱形 B.矩形 C.正方形 D.不確定3.如圖所示,AB是⊙O的直徑,AM、BN是⊙O的兩條切線,D、C分別在AM、BN上,DC切⊙O于點E,連接OD、OC、BE、AE,BE與OC相交于點P,AE與OD相交于點Q,已知AD=4,BC=9,以下結(jié)論:①⊙O的半徑為,②OD∥BE,③PB=,④tan∠CEP=其中正確結(jié)論有()A.1個 B.2個 C.3個 D.4個4.如圖一塊直角三角形ABC,∠B=90°,AB=3,BC=4,截得兩個正方形DEFG,BHJN,設(shè)S1=DEFG的面積,S2=BHJN的面積,則S1、S2的大小關(guān)系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能確定5.如圖,⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,OM:OC=3:5,則AB的長為()A.cm B.8cm C.6cm D.4cm6.下列圖形中,既是軸對稱圖形又是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個7.附城二中到聯(lián)安鎮(zhèn)為5公里,某同學(xué)騎車到達(dá),那么時間t與速度(平均速度)v之間的函數(shù)關(guān)系式是()A.v=5t B.v=t+5 C.v= D.v=8.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm9.二次函數(shù)y=(x﹣1)2+2,它的圖象頂點坐標(biāo)是()A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)10.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數(shù)根,則該三角形的面積是()A. B. C.或 D.或11.如圖所示,在矩形ABCD中,點F是BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則()A.4 B.6 C.8 D.1012.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P、Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A. B. C. D.二、填空題(每題4分,共24分)13.對于實數(shù)a和b,定義一種新的運算“*”,,計算=______________________.若恰有三個不相等的實數(shù)根,記,則k的取值范圍是_______________________.14.已知關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是_____.15.一元二次方程x2﹣3x+2=0的兩根為x1,x2,則x1+x2﹣x1x2=______.16.拋物線向右平移個單位,向上平移1個單位長度得到的拋物線解析式是_____17.如圖,在中,交于點,交于點.若、、,則的長為_________.18.已知一次函數(shù)與反比例函數(shù)的圖象交于點,則________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)與軸和軸分別交于點,點,與反比例函數(shù)在第一象限的圖象交于點,點,且點的坐標(biāo)為.(1)求一次函數(shù)和反比例函數(shù)解析式;(2)若的面積是8,求點坐標(biāo).20.(8分)如圖,△ABC中,AB=8,AC=6.(1)請用尺規(guī)作圖的方法在AB上找點D,使得△ACD∽△ABC(保留作圖痕跡,不寫作法)(2)在(1)的條件下,求AD的長21.(8分)如圖,某高速公路建設(shè)中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).22.(10分)為落實國務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度.2015年市政府共投資3億元人民幣建設(shè)了廉租房12萬平方米,2017年計劃投資6.75億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長率相同.(1)求每年市政府投資的增長率;(2)若這兩年內(nèi)的建設(shè)成本不變,問從2015到2017年這三年共建設(shè)了多少萬平方米廉租房?23.(10分)文物探測隊探測出某建筑物下面埋有文物,為了準(zhǔn)確測出文物所在的深度,他們在文物上方建筑物的一側(cè)地面上相距米的兩處,用儀器測文物,探測線與地面的夾角分別是和,求該文物所在位置的深度(精確到米).24.(10分)如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.25.(12分)某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.(1)求出樹高AB;(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)26.某校綜合實踐小組要對一幢建筑物的高度進(jìn)行測量.如圖,該小組在一斜坡坡腳處測得該建筑物頂端的仰角為,沿斜坡向上走到達(dá)處,(即)測得該建筑物頂端的仰角為.已知斜坡的坡度,請你計算建筑物的高度(即的長,結(jié)果保留根號).

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、是軸對稱圖形,不是中心對稱的圖形,不合題意;

B、是中心對稱圖形,符合題意;

C、既不是軸對稱圖形,也不是中心對稱的圖形,不合題意;

D、是軸對稱圖形,不是中心對稱的圖形,不合題意.

故選:B.【點睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.2、B【分析】菱形的對角線互相垂直,連接個邊中點可得到四邊形的特征.【詳解】解:是矩形.

證明:如圖,∵四邊形ABCD是菱形,

∴AC⊥BD,

∵E,F(xiàn),G,H是中點,

∴EF∥BD,F(xiàn)G∥AC,

∴EF⊥FG,

同理:FG⊥HG,GH⊥EH,HE⊥EF,

∴四邊形EFGH是矩形.

故選:B.【點睛】本題考查了菱形的性質(zhì)與判定定理,矩形的判定定理以及三角形的中位線定理.3、C【解析】試題解析:作DK⊥BC于K,連接OE.∵AD、BC是切線,∴∠DAB=∠ABK=∠DKB=90°,∴四邊形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切線,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半徑為1.故①錯誤,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正確.在RT△OBC中,PB===,故③正確,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正確,∴②③④正確,故選C.4、B【分析】根據(jù)勾股定理求出AC,求出AC邊上的高BM,根據(jù)相似三角形的性質(zhì)得出方程,求出方程的解,即可求得S1,如圖2,根據(jù)相似三角形的性質(zhì)列方程求得HJ=,于是得到S2=()2>()2,即可得到結(jié)論.【詳解】解:如圖1,設(shè)正方形DEFG的邊長是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,過B作BM⊥AC于M,交DE于N,由三角形面積公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四邊形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的邊長是;∴S1=()2,如圖2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故選:B.【點睛】本題考查了相似三角形的性質(zhì)和判定,三角形面積公式,正方形的性質(zhì)的應(yīng)用,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.5、B【分析】由于⊙O的直徑CD=10cm,則⊙O的半徑為5cm,又已知OM:OC=3:5,則可以求出OM=3,OC=5,連接OA,根據(jù)勾股定理和垂徑定理可求得AB.【詳解】解:如圖所示,連接OA.⊙O的直徑CD=10cm,則⊙O的半徑為5cm,即OA=OC=5,又∵OM:OC=3:5,所以O(shè)M=3,∵AB⊥CD,垂足為M,OC過圓心∴AM=BM,在Rt△AOM中,,∴AB=2AM=2×4=1.故選:B.【點睛】本題考查了垂徑定理和勾股定理的應(yīng)用,構(gòu)造以半徑、弦心距和弦長的一半為三邊的直角三角形,是解題的關(guān)鍵.6、B【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念即可得出答案.【詳解】根據(jù)中心對稱圖形和軸對稱圖形的概念,可以判定既是中心對稱圖形又是軸對稱圖形的有第3第4個共2個.故選B.考點:1.中心對稱圖形;2.軸對稱圖形.7、C【分析】根據(jù)速度=路程÷時間即可寫出時間t與速度(平均速度)v之間的函數(shù)關(guān)系式.【詳解】∵速度=路程÷時間,∴v=.故選C.【點睛】此題主要考查反比例函數(shù)的定義,解題的關(guān)鍵是熟知速度路程的公式.8、D【解析】分析:根據(jù)垂徑定理得出OE的長,進(jìn)而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.9、D【解析】二次函數(shù)的頂點式是,,其中是這個二次函數(shù)的頂點坐標(biāo),根據(jù)頂點式可直接寫出頂點坐標(biāo).【詳解】解:故選:D.【點睛】根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(biāo)(對稱軸),最大(最?。┲担鰷p性等.10、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當(dāng)?shù)谌呴L為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當(dāng)?shù)谌呴L為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據(jù)三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當(dāng)?shù)谌呴L為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當(dāng)?shù)谌呴L為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質(zhì),勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.11、C【解析】由矩形的性質(zhì)得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據(jù)AOECOD,面積比等于相似比的平方即可?!驹斀狻俊咚倪呅蜛BCD是矩形,

∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,

∴∠EBF=90°,

∵F為BC的中點,

∴BF=CF,

在△BEF和△CDF中,,

∴△BEF≌△CDF(ASA),

∴BE=CD=AB,

∴AE=2AB=2CD,

∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.【點睛】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握有關(guān)的性質(zhì)與判定是解決問題的關(guān)鍵.12、C【解析】如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1,交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是2.故選C.【點睛】本題考查了切線的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.二、填空題(每題4分,共24分)13、【分析】分當(dāng)時,當(dāng)時兩種情況,分別代入新定義的運算算式即可求解;設(shè)y=,繪制其函數(shù)圖象,根據(jù)圖象確定m的取值范圍,再求k的取值范圍.【詳解】當(dāng)時,即時,當(dāng)時,即時,;設(shè)y=,則y=其函數(shù)圖象如圖所示,拋物線頂點,根據(jù)圖象可得:當(dāng)時,恰有三個不相等的實數(shù)根,其中設(shè),為與的交點,為與的交點,,,時,,故答案為:;【點睛】本題主要考查新定義問題,解題關(guān)鍵是將方程的解的問題轉(zhuǎn)化為函數(shù)的交點問題.14、【分析】根據(jù)根與系數(shù)的關(guān)系可得要使有兩個不相等的實數(shù)根,則必須,進(jìn)而可以計算出k的取值范圍.【詳解】解:根據(jù)根與系數(shù)的關(guān)系可得要使有兩個不相等的實數(shù)根,則.故答案為.【點睛】本題主要考查二元一次方程的根與系數(shù)的關(guān)系,根據(jù)方程根的個數(shù),列不等式求解.15、1【分析】利用根與系數(shù)的關(guān)系得到x1+x2=3,x1x2=2,然后利用整體代入的方法計算.【詳解】解:根據(jù)題意得:x1+x2=3,x1x2=2,

所以x1+x2-x1x2=3-2=1.

故答案為:1.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.16、【分析】根據(jù)圖象的平移規(guī)律,可得答案.【詳解】解:將拋物線向右平移個單位,向上平移1個單位長度得到的拋物線的解析式是將拋物線,

故答案為:.【點睛】主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.17、6【分析】接運用平行線分線段成比例定理列出比例式,借助已知條件即可解決問題.【詳解】,∵DE∥BC,∴,即,解得:,故答案為:.【點睛】本題主要考查了平行線分線段成比例定理及其應(yīng)用問題;運用平行線分線段成比例定理正確寫出比例式是解題的關(guān)鍵.18、1【分析】先把P(a?2,3)代入y=2x?3,求得P的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得.【詳解】∵一次函數(shù)y=2x?3經(jīng)過點P(a?2,3),∴3=2(a?2)?3,解得a=5,∴P(3,3),∵點P在反比例函數(shù)的圖象上,∴k=3×3=1,故答案為1.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,求得交點坐標(biāo)是解題的關(guān)鍵.三、解答題(共78分)19、(1),;(2).【分析】(1)把點分別代入和即可求出一次函數(shù)和反比例函數(shù)解析式;(2)過點作軸于點,過點作軸于點,根據(jù)割補法求出△OAD的面積,然后再根據(jù)三角形的面積公式求出DE的值,從而可求出點D的坐標(biāo).【詳解】解(1)把點代入,解得,∴,把點代入,解得,∴,(2)過點作軸于點,過點作軸于點,∵直線與軸相交于點∴,解得,∴,∴,∵,∴,∴,∴,∴,,∵點在第一象限,∴點的縱坐標(biāo)為2,∴,解得,所以【點睛】本題考查了用待定系數(shù)法求一次函數(shù)和反比例函數(shù)的解析式,三角形面積,反比例函數(shù)圖像上點的坐標(biāo)特征,關(guān)鍵是求出兩函數(shù)的解析式.20、(1)見圖(2)AD=.【解析】(1)圖形見詳解,(2)根據(jù)相似列比例式即可求解.【詳解】解:(1)見下圖(2)∵△ACD∽△ABC,∴AC:AB=AD:AC,∵AB=8,AC=6,∴AD=.【點睛】本題考查了尺規(guī)作圖和相似三角形的性質(zhì),中等難度,熟悉尺規(guī)作圖步驟和相似三角形的性質(zhì)是解題關(guān)鍵.21、隧道AB的長約為635m.【分析】首先過點C作CO⊥AB,根據(jù)Rt△AOC求出OA的長度,根據(jù)Rt△CBO求出OB的長度,然后進(jìn)行計算.【詳解】如圖,過點C作CO⊥直線AB,垂足為O,則CO=1500m∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA==1500×=500m在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-500≈1500-865=635(m)答:隧道AB的長約為635m.考點:銳角三角函數(shù)的應(yīng)用.22、(1)50%;(2)57萬平方米【分析】(1)設(shè)每年市政府投資的增長率為x,由3()2=2017年的投資,列出方程,解方程即可;

(2)2016年的廉租房=12(1+50%),2017年的廉租房=12(1+50%)2,即可得出結(jié)果.【詳解】(1)設(shè)每年市政府投資的增長率為x,根據(jù)題意得:

3()2=6.75,

解得:,或(不合題意,舍去),

∴,

即每年市政府投資的增長率為;

(2)∵12+12(1+50%)+12(1+50%)2=12+18+27=57,

∴從2015到2017年這三年共建設(shè)了57萬平方米廉租房.【點睛】本題考查了一元二次方程的應(yīng)用;熟練掌握列一元二次方程解應(yīng)用題的方法,根據(jù)題意找出等量關(guān)系列出方程是解決問題的關(guān)鍵.23、17.3米【分析】首先構(gòu)建直角三角形,然后利用特殊角銳角三角函數(shù),即可得解.【詳解】過點作于,設(shè),如圖所示:在中,,則在中,,(米)(米)即米.答:該文物所在的位置在地下約17.3米處.【點睛】此題主要考查含有特殊銳角三角函數(shù)的實際應(yīng)用,解題關(guān)鍵是構(gòu)建直角三角形,即可解題.24、(1)見解析:(2)CE=1.【分析】(1)連接AD,如圖,先證明得到∠1=∠2,再根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到OD⊥EF,然后證明∠1=∠4得到結(jié)論;(2)連接BC交OD于F,如圖,根據(jù)圓周角定理得到∠ACB=90°,再根據(jù)垂徑定理,由得到OD⊥BC,則CF=BF,所以O(shè)F=AC=,從而得到DF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論