統(tǒng)計(jì)抽樣和抽樣分布_第1頁
統(tǒng)計(jì)抽樣和抽樣分布_第2頁
統(tǒng)計(jì)抽樣和抽樣分布_第3頁
統(tǒng)計(jì)抽樣和抽樣分布_第4頁
統(tǒng)計(jì)抽樣和抽樣分布_第5頁
已閱讀5頁,還剩51頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

為什么要進(jìn)行抽樣?如何進(jìn)行簡單隨機(jī)抽樣?正態(tài)分布、分布、F分布、t分布的定義、圖形分布形態(tài)如何?中心極限定理的含義如何?

1/554.1關(guān)于抽樣的基本概念

為什么要抽樣? 為了收集必要的資料,對(duì)所研究對(duì)象(總體)的全部元素逐一進(jìn)行觀測,往往不很現(xiàn)實(shí)。抽樣原因元素多,搜集數(shù)據(jù)費(fèi)時(shí)、費(fèi)用大,不及時(shí)而使所得的數(shù)據(jù)無意義總體龐大,難以對(duì)總體的全部元素進(jìn)行研究檢查具有破壞性炮彈、燈管、磚等2簡單隨機(jī)抽樣(x1,x2,……,xn): 簡單隨機(jī)抽樣是指從總體中抽取樣本容量為n的樣本時(shí),x1,x2,……,xn這n個(gè)隨機(jī)變量必須具備以下兩個(gè)條件:這n個(gè)隨機(jī)變量與總體X具有相同的概率分布;它們之間相互獨(dú)立。4.1關(guān)于抽樣的基本概念

3

甲乙丙丁四個(gè)生產(chǎn)商,其產(chǎn)品質(zhì)量如下表所示: 如果僅從甲乙兩個(gè)生產(chǎn)商的產(chǎn)品中進(jìn)行抽樣,抽樣質(zhì)量就偏高;如果僅從丙丁兩個(gè)生產(chǎn)商的產(chǎn)品中進(jìn)行抽樣,抽樣質(zhì)量就偏低; 因此采用簡單隨機(jī)抽樣保證隨機(jī)樣本與總體具有相同的概率分布。甲乙丙丁質(zhì)量高高低低表4-14.1關(guān)于抽樣的基本概念

4樣本統(tǒng)計(jì)量與抽樣分布: 在簡單隨機(jī)抽樣中,樣本具有隨機(jī)性,樣本的參數(shù),s2等也會(huì)隨著樣本不同而不同,故它們是樣本的函數(shù),記為g(x1,x2,…,xn),稱為樣本統(tǒng)計(jì)量。

統(tǒng)計(jì)量的概率分布稱為抽樣分布(Sample distribution)

4.1關(guān)于抽樣的基本概念

5統(tǒng)計(jì)量定義:設(shè)為來自總體X的一個(gè)樣本,為一個(gè)函數(shù),如果中不包含任何未知參數(shù),則稱為樣本的一個(gè)統(tǒng)計(jì)量。樣本均值樣本方差K階樣本矩常見的統(tǒng)計(jì)量練習(xí)證明:K階中心矩6幾種概率分布正態(tài)分布分布

F分布

t分布4.2幾種與正態(tài)分布有關(guān)的概率分布7若隨機(jī)變量X的概率密度函數(shù)記為(1)正態(tài)分布8圖4-1一般正態(tài)分布(1)正態(tài)分布9標(biāo)準(zhǔn)正態(tài)分布:

當(dāng)時(shí), 記為U∽N(0,1)圖4-2標(biāo)準(zhǔn)正態(tài)分布(1)正態(tài)分布10非標(biāo)準(zhǔn)正正態(tài)分布布向標(biāo)準(zhǔn)準(zhǔn)正態(tài)分分布的轉(zhuǎn)轉(zhuǎn)化若標(biāo)準(zhǔn)化因因子則U∽N(0,1)(1)正態(tài)分布布11查表當(dāng)u大于零時(shí)時(shí),可查查正態(tài)分分布表但如果u<0時(shí),則可可由式求求出(1)正態(tài)分布布1213線性性質(zhì)質(zhì):如果,且相互獨(dú)獨(dú)立。對(duì)對(duì)于常數(shù)數(shù),,有下式式成立::(1)正態(tài)分布布14相互獨(dú)立立且均為為服從N(0,1)分布的的隨機(jī)變量,則則稱隨機(jī)機(jī)變量所所服服從的分分布是自自由度為n的分分布,且且記。。定義(2)分布15自由度是是指獨(dú)立立隨機(jī)變變量的個(gè)個(gè)數(shù),分布的密度函數(shù)為——分布16圖4-3χ2分布密度度函數(shù)圖圖形(2)分布01357911131517x0.50.40.30.20.1n=1n=4n=10圖4-3f(x)其圖形隨隨自由度度的不同同而有所所改變.17查表:對(duì)于給定定的α,0<α<1,可在分分布布表中查查得,即即例如即指(2)分布18滿足的數(shù)為

2分布的上分位數(shù)或上側(cè)臨界值,其幾何意意義見右右圖所示示.其中f(x)是2-分布的概概率密度度.f(x)x0圖4-4顯然,在自由度n取定以后,的值只與有關(guān).例如,當(dāng)當(dāng)n=21,=0.05時(shí),由附附表4(P207)可查得,,32.67即2分布的上上分位數(shù)19性質(zhì):如果,,則則;;設(shè),,且且相互獨(dú)獨(dú)立,則則若,,已知知相相互獨(dú)獨(dú)立,,,則(2)分布20總體,,是是X的一個(gè)樣樣本,為樣本的的平均數(shù)數(shù),為樣本的的方差。。則:a.相互獨(dú)立立b.(2)分布21(b)式的自由由度為什什么是n-1?從表面上上看,是n個(gè)正態(tài)隨機(jī)變量的平方和,但實(shí)際上上它們不不是獨(dú)立立的,它們之間有有一種線性性約束關(guān)系系:=0這表明,當(dāng)當(dāng)這個(gè)n個(gè)正態(tài)隨機(jī)機(jī)變量中有有n-1個(gè)取值給定定時(shí),剩下下的一個(gè)的的取值就跟跟著唯一確確定了,故故在這n項(xiàng)平方和中中只有n-1項(xiàng)是獨(dú)立的的.所以(b)式的自由度度是n-1.22232425設(shè)相互獨(dú)立立的隨機(jī)變變量V和W分別服從自自由度為n1,n2的分分布,即,,則隨機(jī)變量量服服從從F分布。n1,n2分別是它的第一自自由度和第第二自由度度,且通常常記為定義(3)F分布26圖4-5F分布圖F(3)F分布27查表性質(zhì)(3)F分布(請(qǐng)自行給給出證明))28設(shè)隨機(jī)變量量U服從標(biāo)準(zhǔn)正正態(tài)分布,,隨機(jī)變量量W服從自由度度為n的分分布,且U與W相互獨(dú)立,,則稱隨機(jī)變變量服從自由度度為n的t分布,記為為T~t(n)。定義(4)t分布(Students分布)29圖4-6n=∞正態(tài)分布n=10n=1t分布圖(4)t分布(Students分布)30查表或性質(zhì):當(dāng)n很大時(shí),此時(shí),tα/2≈uα/2,t分布近似標(biāo)標(biāo)準(zhǔn)正態(tài)分分布。(4)t分布(Students分布)31定理設(shè)(X1,X2,…,Xn)為來自正態(tài)態(tài)總體X~N(,2)的樣本,則則統(tǒng)計(jì)量證由于與S

2相互獨(dú)立,且由定義得32無限總體:設(shè)總體X~N(μ,σ2),X1,X2,…,Xn是總體X的隨機(jī)樣本本,樣本平平均數(shù),則4.3樣本平均數(shù)數(shù)的抽樣分分布33有限總體有限總體若若采取有放放回抽樣,,則與無限限總體等價(jià)價(jià)。有限總總體容量為為N而采取無放放回抽樣,,且n/N≤0.1,仍可視為為無限總體體,而當(dāng)n/N>0.1時(shí)則稱式為為有限總體體的修正系系數(shù)。4.3樣本平均數(shù)數(shù)的抽樣分分布證明可以見見<抽樣調(diào)調(diào)查的方法法和原理>梁小筠筠p42一些復(fù)雜的的展開,無技術(shù)含量量(一網(wǎng)友留言言)34從總體中抽抽取樣本容容量為n的簡單隨機(jī)機(jī)樣本,當(dāng)當(dāng)樣本容量n≥30時(shí),樣本均均值的的抽樣分布布可用正態(tài)態(tài)概率分布近近似。4.4中心極限定定理35圖4-64.4中心極限定定理36獨(dú)立同分布布的中心極極限定理37德莫佛——拉普拉斯定定理38德莫佛——拉普拉斯定定理的證明明39中心極限定定理的意義義我們知道,,正態(tài)分布布是現(xiàn)實(shí)生生活中使用用最多、最最廣泛、最最重要的一一種分布。。許多隨機(jī)機(jī)變量本身身并不屬于于正態(tài)分布布,但它們們的極限分分布是正態(tài)態(tài)分布。中中心極限定定理闡明了了在什么條條件下,原原來不屬于正態(tài)分分布的一些些隨機(jī)變量量其總和分分布漸近地地服從正態(tài)態(tài)分布。為為我們利用用正態(tài)分布布來解決這這類隨機(jī)變變量的問題題提供了理理論依據(jù)。。40例1解41例2解4243例3解44例445解46五、課堂練練習(xí)47解148解249例4設(shè)總體X~N(0,1),X1,X2,…,Xn為簡單隨機(jī)機(jī)樣本,試試問下列統(tǒng)統(tǒng)計(jì)量各服服從什么分分布?解(1)因?yàn)閄i~N(0,1),i=1,2,…,n.所以X1-X2~N(0,2),故~t(2).50例4設(shè)總體X~N(0,1),X1,X2,…,Xn為簡單隨機(jī)機(jī)樣本,試試問下列統(tǒng)統(tǒng)計(jì)量各服服從什么分分布?續(xù)解(2)因?yàn)閄1~N(0,1),故~t(n-1).51例4設(shè)總體X~N(0,1),X1,X2,…,Xn為簡單隨機(jī)機(jī)樣本,試試問下列統(tǒng)統(tǒng)計(jì)量各服服從什么分分布?續(xù)解(3)因?yàn)樗浴獸(3,n-3).52例5若T~t(n),問T2服從什么分分布?解因?yàn)門~t(n),可以認(rèn)為其中U~N(0,1),V~2(n),U2~2(1),~F(1,n).53例6設(shè)總體X~N(,42),X1,X2,…,X10是n=10簡單隨機(jī)樣本本,S2為樣本方差,,已知P{S2>}=0.1,求.解因?yàn)閚=10,n-1=9,2=42,所以~2(9).又P{S2>}==0.1,所以≈查表14.684.故≈14.684x≈26.10554例7設(shè)(X

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論