2022-2023學(xué)年湖北省十堰市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第1頁
2022-2023學(xué)年湖北省十堰市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第2頁
2022-2023學(xué)年湖北省十堰市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第3頁
2022-2023學(xué)年湖北省十堰市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第4頁
2022-2023學(xué)年湖北省十堰市成考專升本高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年湖北省十堰市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.3x2+C

B.

C.x3+C

D.

2.

3.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

4.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

5.

6.

7.已知作用在簡支梁上的力F與力偶矩M=Fl,不計(jì)桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同8.()。A.-2B.-1C.0D.29.A.A.π/4

B.π/2

C.π

D.2π

10.A.A.∞B.1C.0D.-1

11.擺動(dòng)導(dǎo)桿機(jī)構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點(diǎn)到滑竿CD間的距離為l,則關(guān)于滑竿上銷釘A的運(yùn)動(dòng)參數(shù)計(jì)算有誤的是()。

A.運(yùn)動(dòng)方程為x=ltan∮=ltanωt

B.速度方程為

C.加速度方程

D.加速度方程

12.

13.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)

14.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無窮小量是().

A.2x3

B.3x2

C.x2

D.x3

15.

16.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-117.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

18.

19.20.

[]A.e-x+C

B.-e-x+C

C.ex+C

D.-ex+C

21.

22.

23.

24.政策指導(dǎo)矩陣是根據(jù)()將經(jīng)營單值進(jìn)行分類的。

A.業(yè)務(wù)增長率和相對(duì)競爭地位

B.業(yè)務(wù)增長率和行業(yè)市場前景

C.經(jīng)營單位的競爭能力與相對(duì)競爭地位

D.經(jīng)營單位的競爭能力與市場前景吸引力

25.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

26.個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()

A.前慣例層次B.慣例層次C.原則層次D.以上都不是27.A.A.2xy3

B.2xy3-1

C.2xy3-siny

D.2xy3-siny-1

28.A.

B.

C.

D.

29.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)

30.A.

B.

C.e-x

D.

31.

32.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4

33.

34.設(shè)z=x2+y2,dz=()。

A.2ex2+y2(xdx+ydy)

B.2ex2+y2(zdy+ydx)

C.ex2+y2(xdx+ydy)

D.2ex2+y2(dx2+dy2)

35.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

36.

37.A.-3-xln3

B.-3-x/ln3

C.3-x/ln3

D.3-xln3

38.A.-cosxB.-ycosxC.cosxD.ycosx39.

40.

41.A.A.

B.

C.

D.

42.

43.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

44.進(jìn)行鋼筋混凝土受彎構(gòu)件斜截面受剪承載力設(shè)計(jì)時(shí),防止發(fā)生斜拉破壞的措施是()。

A.控制箍筋間距和箍筋配筋率B.配置附加箍筋和吊筋C.采取措施加強(qiáng)縱向受拉鋼筋的錨固D.滿足截面限值條件

45.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。

A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)

B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為

C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為

D.增大靜變形是減小沖擊載荷的主要途徑

46.

47.A.2B.2xC.2yD.2x+2y48.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

49.

50.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定二、填空題(20題)51.微分方程y=x的通解為________。

52.

53.

54.

55.

56.

57.

58.將積分改變積分順序,則I=______.

59.設(shè)f(x)在x=1處連續(xù),=2,則=________。

60.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

61.

62.

63.

64.設(shè)f(x)=xex,則f'(x)__________。

65.

66.求67.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.

68.

69.

70.

三、計(jì)算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).72.73.74.求微分方程的通解.75.將f(x)=e-2X展開為x的冪級(jí)數(shù).76.證明:77.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.78.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

79.

80.求曲線在點(diǎn)(1,3)處的切線方程.81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

82.83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.84.

85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

86.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

87.

88.

89.求微分方程y"-4y'+4y=e-2x的通解.

90.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)91.

92.

93.

94.證明:在區(qū)間(0,1)內(nèi)有唯一實(shí)根.95.設(shè)函數(shù)f(x)=2x+In(3x+2),求f''(0).

96.確定函數(shù)f(x,y)=3axy-x3-y3(a>0)的極值點(diǎn).

97.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.98.

99.

100.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。

五、高等數(shù)學(xué)(0題)101.求極限

六、解答題(0題)102.將周長為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問繞邊長為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?

參考答案

1.B

2.C

3.D

4.D

5.B解析:

6.C解析:

7.D

8.A

9.B

10.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

11.C

12.D

13.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.

14.B由于當(dāng)x一0時(shí),3x2為x的二階無窮小量,2x3為戈的三階無窮小量.因此,3x2+2x3為x的二階無窮小量.又由,可知應(yīng)選B.

15.A

16.C解析:

17.C

18.D解析:

19.A

20.B

21.B

22.B解析:

23.C

24.D解析:政策指導(dǎo)矩陣根據(jù)對(duì)市場前景吸引力和經(jīng)營單位的相對(duì)競爭能力的劃分,可把企業(yè)的經(jīng)營單位分成九大類。

25.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

26.C解析:處于原則層次的個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則。

27.A

28.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

29.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.

由于相應(yīng)齊次方程為y"+3y'0,

其特征方程為r2+3r=0,

特征根為r1=0,r2=-3,

自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)

故應(yīng)選D.

30.A

31.A

32.D的值等于區(qū)域D的面積,D為邊長為2的正方形面積為4,因此選D。

33.C

34.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy

35.C

36.B

37.A由復(fù)合函數(shù)鏈?zhǔn)椒▌t可知,因此選A.

38.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

39.D

40.B解析:

41.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

可知應(yīng)選A.

42.B解析:

43.B如果y1,y2這兩個(gè)特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

44.A

45.C

46.C

47.A

48.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1

y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。

所以選A。

49.C

50.C51.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,

52.yxy-1

53.y

54.+∞(發(fā)散)+∞(發(fā)散)55.本題考查的知識(shí)點(diǎn)為重要極限公式。

56.x/1=y/2=z/-1

57.-ln(3-x)+C-ln(3-x)+C解析:

58.

59.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。

60.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

61.1/(1-x)2

62.y=0

63.

64.(1+x)ex

65.11解析:

66.=0。67.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

68.-2-2解析:

69.

本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

70.1

71.

列表:

說明

72.

73.

74.

75.

76.

77.

78.由二重積分物理意義知

79.80.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

81.

82.

83.

84.

85.由等價(jià)無窮小量的定義可知

86.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%87.由一階線性微分方程通解公式有

88.

89.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

90.函數(shù)的定義域?yàn)?/p>

注意

91.解

92.

93.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論