濰城區(qū)公開選拔年輕干部到基層掛職_第1頁
濰城區(qū)公開選拔年輕干部到基層掛職_第2頁
濰城區(qū)公開選拔年輕干部到基層掛職_第3頁
濰城區(qū)公開選拔年輕干部到基層掛職_第4頁
濰城區(qū)公開選拔年輕干部到基層掛職_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

DOE-basedAutomaticProcessControlwithConsiderationofModelUncertaintiesJanShiandJing

ZhongTheUniversityofMichigan

C.F.JeffWuGeorgiaInstituteofTechnology1OutlineIntroductionDOE-basedAutomaticProcessControlwithConsiderationofModelUncertaintyProcessmodelControlobjectivefunctionControllerdesignstrategiesSimulationandcasestudySummary2ProblemStatementProcessvariationismainlycausedbythechangeofunavoidablenoisefactors.Processvariationreductioniscriticalforprocessqualityimprovement.OfflineRobustParameterDesign(RPD)usedatthedesignstageTosetanoptimalconstantlevelforcontrollablefactorsthatcanensurenoisefactorshaveaminimalinfluenceonprocessresponsesBasedonthenoisedistributionbutnotrequiringonlineobservationsofnoisefactorsOnlineAutomaticProcessControl(APC)duringproductionWiththeincreasingusageofin-processsensingofnoisefactors,itwillprovideanopportunitytoonlineadjustcontrolfactorstocompensatethechangeofnoisefactors,whichisexpectedtoachieveabetterperformancethanofflineRPD.3MotivationofUsingAPCx=x1enoisedistributiony(x,e)abOnlineadjustXbasedonex=x2Offlinefixx=x2Offlinefixx=x14TheObjectiveandFocus

DOE-BasedAPC

DesignofExperiments(DOE)AutomaticProcessControl(APC)StatisticalProcessControl(SPC)Theresearchfocusesonthedevelopmentofautomaticprocesscontrol(APC)methodologiesbasedonDOEregressionmodelsandreal-timemeasurementorestimationofnoisefactorsforcomplexmfgprocesses5LiteratureReviewForcomplexdiscretemanufacturingprocesses,therelationshipbetweentheresponses(outputs)andprocessvariables(inputs)areobtainedbyDOEusingaresponsesurfacemodel,ratherthanusingdynamicdifferential/differenceequationsofflinerobustparameterdesign(RPD)(Taguchi,1986)Improverobustparameterdesignbasedontheexactleveloftheobserveduncontrollablenoisefactors(Pledger,1996)ExistingAPCliteraturearemainlyforautomaticcontrolofdynamicsystemsthataredescribedbydynamicdifferential/differenceequations.CertaintyEquivalenceControl(CEC)(Stengel,1986):Thecontrollerdesignandstateestimatordesignareconductedseparately(Theuncertaintyofsystemstatesisnotconsideredinthecontrollerdesign)CautiousControl(CC)(AstromandWittenmark,1995):Thecontrollerisdesignedbyconsideringthesystemstateestimationuncertainty,whichisextremelydifficultforacomplexnonlineardynamicsystem.

JinandDing(2005)proposedDoe-BasedAPCconcepts:consideringon-linecontrolwithestimationofsomenoisefactors.Nointeractiontermsbetweennoiseandcontrolfactorsintheirmodel.6ObjectiveDevelopageneralmethodologyforcontrollerdesignbasedonaregressionmodelwithinteractionterms.InvestigateanewcontrollawconsideringmodelparameterestimationuncertaintiesComparetheperformancesofCC,CEC,andRPD,aswellasperformancewithsensinguncertainties.7MethodologyDevelopmentProcedures

APCUsingRegressionResponseModels

BasedonkeyprocessvariableS1:ConductDOEandprocessmodelingObtainsignificantfactors&estimatedprocessmodel

S2:DetermineAPCcontrolstrategy(consideringmodelerrors

S3:Onlineadjustcontrollablefactors

S4:ControlperformanceevaluationBasedonobservationuncertainty

Basedonprocessoperationconstraintsoncontroller

Usecertaintyequivalencecontrolorcautiouscontrol

Obtainreducedprocessvariation81.ProcessVariableCharacterizationProcessVariablesControllableFactorsNoiseFactorsUnobservableNoiseFactorsObservableNoiseFactorsOff-linesettingFactorsOn-lineadjustableFactorsY=f(X,U,e,n)92.ControlSystemFrameworkControllableFactors(x)ManufacturingProcessUnobservableNoiseFactors(n)ObservableNoiseFactors(e)In-ProcessSensingofeResponse(y)ObserverforNoiseFactors(e)Feedforward

ControllerNoiseFactorsPredictedResponseTarget10Observationsofmeasurablenoisefactors,denotedby,areunbiased,i.e.,and .3ControllerDesign

3.1ProblemAssumptionsThemanufacturingprocessisstaticwithsmoothlychangingvariablesovertime–ParameterStabilityEstimatedprocessparametersdenoted

by,isestimatedfromexperimentaldata.e,n

andεareindependent,withE(e)=0,Cov(e)=Σe,E(n)=0,Cov(n)=Σn,E(ε)=0,Cov(ε)=Σε.εarei.i.d.113ControllerDesign

3.2ObjectiveFunctionObjectiveFunction(QuadraticLoss)OptimizationProblem12Step1Off-lineControllableFactorsSettingStep2On-lineAutomaticControlLawProcedureforSolvingOptimizationProblemStep2obtainX*bysolvingoptimizationproblemofJAPC

3ControllerDesign

3.3ControlStrategyStep1ClosedformsolutionofU*bysolvingProcessControlStrategy–TwoStepProcedure134.CaseStudy:

AnInjectionMoldingProcessProcessDescriptionResponseVariable(y):

PercentageShrinkageofMoldedPartsProcessVariables:14DOEModelingReducedDOEModelafterCoefficientSignificanceTestsDesignedExperimentResult(Engel,1992)ParameterEstimationError15RPDSettings

RobustParameterDesignVarianceModelResponseModel,andu1andx3areadjustedaccordingtotargetvaluesasinrighttable16ObjectiveLossFunctionOptimalSettingsDOE-BasedAPCwhere17~~AssumingOptimalOff-lineSettingSimulationResultsComparisonofRPD,CEcontrolandCautiousControlControlStrategyEvaluationCautiouscontrollawperformsmuchbetterthanRPD~18SimulationResults-2CEcontrollerperformsmuchbetterthanRDwhenthemeasurementisperfect,butitsadvantagedecreaseswhenthemeasurementisnotperfect,andwillcausealargerqualitylossthanRPDcontrollerunderhighmeasurementuncertainty.CertaintyEquivalence–assumeobservationperfect19Controlstrategywithpartialsensingfailure–1Sensornoiselevelchange–nomodelingerror150observations,sensornoiselevelincreasedfrompoint51to100,thenrestored.t=1.6CEControlsuffersgreatlyfromnoiselevelchangeMeanofRPDhasdeviatedfromtarget20Controlstrategywithpartialsensingfailure–2255observations,sensornoiselevelincreasedfrompoint101to200,thenrestoredSensornoiselevelchangeOverallJ/J_ce=16.8%.APCperformanceissteadyoverdifferentnoiselevels.–APCconsideringmodelingerror21Controlstrategywithpartialsensingfailure–3Sensorfailure

-Assumenomodelingerror,-250observations,sensorfailedfrompoint51to150,thenrepairedControlStrategySwitchtoRPDsettingafterthedetectionofsensorfailure-Actualsystemwillhavestepresponse22[2]In-processsensingvariables:tonnagesignal,shutheight,vibration,punchspeed,temperature[3]In-processpartsensing:surfaceanddimensionmeasurements[1]Controllablevariables:shutheight,punchspeed,temperature,bindingforcecasterin-processpartformingFormedpartDOE-BasedAPCEstimablenoisefactors:materialproperties(hardness,thickness),gibconditions,die/toolwearInestimablenoisefactors:distributionoflubrication,materialcoatingproperties,dieset-upvariationProcesschangedetectionandon-lineestimationofestimablenoisefactorsIndustrialCollaborationwithOGTechnologies:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論