




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
DOE-basedAutomaticProcessControlwithConsiderationofModelUncertaintiesJanShiandJing
ZhongTheUniversityofMichigan
C.F.JeffWuGeorgiaInstituteofTechnology1OutlineIntroductionDOE-basedAutomaticProcessControlwithConsiderationofModelUncertaintyProcessmodelControlobjectivefunctionControllerdesignstrategiesSimulationandcasestudySummary2ProblemStatementProcessvariationismainlycausedbythechangeofunavoidablenoisefactors.Processvariationreductioniscriticalforprocessqualityimprovement.OfflineRobustParameterDesign(RPD)usedatthedesignstageTosetanoptimalconstantlevelforcontrollablefactorsthatcanensurenoisefactorshaveaminimalinfluenceonprocessresponsesBasedonthenoisedistributionbutnotrequiringonlineobservationsofnoisefactorsOnlineAutomaticProcessControl(APC)duringproductionWiththeincreasingusageofin-processsensingofnoisefactors,itwillprovideanopportunitytoonlineadjustcontrolfactorstocompensatethechangeofnoisefactors,whichisexpectedtoachieveabetterperformancethanofflineRPD.3MotivationofUsingAPCx=x1enoisedistributiony(x,e)abOnlineadjustXbasedonex=x2Offlinefixx=x2Offlinefixx=x14TheObjectiveandFocus
DOE-BasedAPC
DesignofExperiments(DOE)AutomaticProcessControl(APC)StatisticalProcessControl(SPC)Theresearchfocusesonthedevelopmentofautomaticprocesscontrol(APC)methodologiesbasedonDOEregressionmodelsandreal-timemeasurementorestimationofnoisefactorsforcomplexmfgprocesses5LiteratureReviewForcomplexdiscretemanufacturingprocesses,therelationshipbetweentheresponses(outputs)andprocessvariables(inputs)areobtainedbyDOEusingaresponsesurfacemodel,ratherthanusingdynamicdifferential/differenceequationsofflinerobustparameterdesign(RPD)(Taguchi,1986)Improverobustparameterdesignbasedontheexactleveloftheobserveduncontrollablenoisefactors(Pledger,1996)ExistingAPCliteraturearemainlyforautomaticcontrolofdynamicsystemsthataredescribedbydynamicdifferential/differenceequations.CertaintyEquivalenceControl(CEC)(Stengel,1986):Thecontrollerdesignandstateestimatordesignareconductedseparately(Theuncertaintyofsystemstatesisnotconsideredinthecontrollerdesign)CautiousControl(CC)(AstromandWittenmark,1995):Thecontrollerisdesignedbyconsideringthesystemstateestimationuncertainty,whichisextremelydifficultforacomplexnonlineardynamicsystem.
JinandDing(2005)proposedDoe-BasedAPCconcepts:consideringon-linecontrolwithestimationofsomenoisefactors.Nointeractiontermsbetweennoiseandcontrolfactorsintheirmodel.6ObjectiveDevelopageneralmethodologyforcontrollerdesignbasedonaregressionmodelwithinteractionterms.InvestigateanewcontrollawconsideringmodelparameterestimationuncertaintiesComparetheperformancesofCC,CEC,andRPD,aswellasperformancewithsensinguncertainties.7MethodologyDevelopmentProcedures
APCUsingRegressionResponseModels
BasedonkeyprocessvariableS1:ConductDOEandprocessmodelingObtainsignificantfactors&estimatedprocessmodel
S2:DetermineAPCcontrolstrategy(consideringmodelerrors
S3:Onlineadjustcontrollablefactors
S4:ControlperformanceevaluationBasedonobservationuncertainty
Basedonprocessoperationconstraintsoncontroller
Usecertaintyequivalencecontrolorcautiouscontrol
Obtainreducedprocessvariation81.ProcessVariableCharacterizationProcessVariablesControllableFactorsNoiseFactorsUnobservableNoiseFactorsObservableNoiseFactorsOff-linesettingFactorsOn-lineadjustableFactorsY=f(X,U,e,n)92.ControlSystemFrameworkControllableFactors(x)ManufacturingProcessUnobservableNoiseFactors(n)ObservableNoiseFactors(e)In-ProcessSensingofeResponse(y)ObserverforNoiseFactors(e)Feedforward
ControllerNoiseFactorsPredictedResponseTarget10Observationsofmeasurablenoisefactors,denotedby,areunbiased,i.e.,and .3ControllerDesign
3.1ProblemAssumptionsThemanufacturingprocessisstaticwithsmoothlychangingvariablesovertime–ParameterStabilityEstimatedprocessparametersdenoted
by,isestimatedfromexperimentaldata.e,n
andεareindependent,withE(e)=0,Cov(e)=Σe,E(n)=0,Cov(n)=Σn,E(ε)=0,Cov(ε)=Σε.εarei.i.d.113ControllerDesign
3.2ObjectiveFunctionObjectiveFunction(QuadraticLoss)OptimizationProblem12Step1Off-lineControllableFactorsSettingStep2On-lineAutomaticControlLawProcedureforSolvingOptimizationProblemStep2obtainX*bysolvingoptimizationproblemofJAPC
3ControllerDesign
3.3ControlStrategyStep1ClosedformsolutionofU*bysolvingProcessControlStrategy–TwoStepProcedure134.CaseStudy:
AnInjectionMoldingProcessProcessDescriptionResponseVariable(y):
PercentageShrinkageofMoldedPartsProcessVariables:14DOEModelingReducedDOEModelafterCoefficientSignificanceTestsDesignedExperimentResult(Engel,1992)ParameterEstimationError15RPDSettings
RobustParameterDesignVarianceModelResponseModel,andu1andx3areadjustedaccordingtotargetvaluesasinrighttable16ObjectiveLossFunctionOptimalSettingsDOE-BasedAPCwhere17~~AssumingOptimalOff-lineSettingSimulationResultsComparisonofRPD,CEcontrolandCautiousControlControlStrategyEvaluationCautiouscontrollawperformsmuchbetterthanRPD~18SimulationResults-2CEcontrollerperformsmuchbetterthanRDwhenthemeasurementisperfect,butitsadvantagedecreaseswhenthemeasurementisnotperfect,andwillcausealargerqualitylossthanRPDcontrollerunderhighmeasurementuncertainty.CertaintyEquivalence–assumeobservationperfect19Controlstrategywithpartialsensingfailure–1Sensornoiselevelchange–nomodelingerror150observations,sensornoiselevelincreasedfrompoint51to100,thenrestored.t=1.6CEControlsuffersgreatlyfromnoiselevelchangeMeanofRPDhasdeviatedfromtarget20Controlstrategywithpartialsensingfailure–2255observations,sensornoiselevelincreasedfrompoint101to200,thenrestoredSensornoiselevelchangeOverallJ/J_ce=16.8%.APCperformanceissteadyoverdifferentnoiselevels.–APCconsideringmodelingerror21Controlstrategywithpartialsensingfailure–3Sensorfailure
-Assumenomodelingerror,-250observations,sensorfailedfrompoint51to150,thenrepairedControlStrategySwitchtoRPDsettingafterthedetectionofsensorfailure-Actualsystemwillhavestepresponse22[2]In-processsensingvariables:tonnagesignal,shutheight,vibration,punchspeed,temperature[3]In-processpartsensing:surfaceanddimensionmeasurements[1]Controllablevariables:shutheight,punchspeed,temperature,bindingforcecasterin-processpartformingFormedpartDOE-BasedAPCEstimablenoisefactors:materialproperties(hardness,thickness),gibconditions,die/toolwearInestimablenoisefactors:distributionoflubrication,materialcoatingproperties,dieset-upvariationProcesschangedetectionandon-lineestimationofestimablenoisefactorsIndustrialCollaborationwithOGTechnologies:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護士怎么弄課題申報書
- 鄭州課題申報書
- 教育課題申報立項書范文
- 怎么搜到課題項目申報書
- epc和融資合同范例
- 課題立項申報書成果形式
- 美發(fā)教學(xué)課題申報書
- 課題申報書封面需蓋章嗎
- 農(nóng)村房產(chǎn)協(xié)議合同范例
- 包工清包合同范本
- 第4章:理賠額和理賠次數(shù)的分布
- 人教版小學(xué)數(shù)學(xué)四年級下冊《復(fù)式條形統(tǒng)計圖》說課稿
- 2023高效制冷機房系統(tǒng)應(yīng)用技術(shù)規(guī)程
- 配電室土建施工方案
- 英語教學(xué)方法與策略
- 2021中職 手工制茶 賽賽題(賽項賽題)
- 綜合體弱電智能化系統(tǒng)介紹課件
- 車隊安全教育培訓(xùn)內(nèi)容
- 抗原 抗原(免疫學(xué)檢驗課件)
- 民航概論PPT全套教學(xué)課件
- 輪轂電機驅(qū)動的越野車雙橫臂懸架設(shè)計
評論
0/150
提交評論