下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過(guò)樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg2.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請(qǐng)問(wèn)第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.音樂(lè),是用聲音來(lái)展現(xiàn)美,給人以聽(tīng)覺(jué)上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂(lè)聲的本質(zhì),他證明了所有的樂(lè)聲都能用數(shù)學(xué)表達(dá)式來(lái)描述,它們是一些形如的簡(jiǎn)單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂(lè)聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂(lè)音的是()A. B. C. D.4.設(shè),,是非零向量.若,則()A. B. C. D.5.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.6.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.67.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)8.已知,若,則等于()A.3 B.4 C.5 D.69.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]10.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則的最小值為()A. B. C. D.11.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對(duì)稱,若實(shí)數(shù)滿足,則的取值范圍是()A. B. C. D.12.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某班星期一共八節(jié)課(上午、下午各四節(jié),其中下午最后兩節(jié)為社團(tuán)活動(dòng)),排課要求為:語(yǔ)文、數(shù)學(xué)、外語(yǔ)、物理、化學(xué)各排一節(jié),從生物、歷史、地理、政治四科中選排一節(jié).若數(shù)學(xué)必須安排在上午且與外語(yǔ)不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則不同的排法有__________種.14.一個(gè)空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如圖所示,則這個(gè)幾何體的體積是___________15.若復(fù)數(shù)(是虛數(shù)單位),則________16.設(shè)平面向量與的夾角為,且,,則的取值范圍為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)是自然對(duì)數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.18.(12分)設(shè)橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,已知橢圓離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為3.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線斜率的取值范圍.19.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.20.(12分)如圖,三棱臺(tái)中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.21.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國(guó)建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國(guó),黨和國(guó)家為勞動(dòng)者開(kāi)拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無(wú)公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開(kāi)展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長(zhǎng)光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長(zhǎng)光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說(shuō)出你的決策方案并說(shuō)明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長(zhǎng)光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購(gòu)均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤(rùn);(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過(guò)5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.22.(10分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,.求C;若,求,的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過(guò)樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤.故選D.2.B【解析】
人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.3.C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.4.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.5.A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無(wú)零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.6.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.7.B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.8.C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)椋杂?,得,故選:C.【點(diǎn)睛】該題考查的是有關(guān)向量的問(wèn)題,涉及到的知識(shí)點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.9.D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.10.B【解析】
由余弦的二倍角公式化簡(jiǎn)函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長(zhǎng)度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長(zhǎng)度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡(jiǎn)單題.11.C【解析】
根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對(duì)稱,則函數(shù)的圖象關(guān)于軸對(duì)稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.12.C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對(duì)選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1344【解析】
分四種情況討論即可【詳解】解:數(shù)學(xué)排在第一節(jié)時(shí)有:數(shù)學(xué)排在第二節(jié)時(shí)有:數(shù)學(xué)排在第三節(jié)時(shí)有:數(shù)學(xué)排在第四節(jié)時(shí)有:所以共有1344種故答案為:1344【點(diǎn)睛】考查排列、組合的應(yīng)用,注意分類討論,做到不重不漏;基礎(chǔ)題.14.【解析】
先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個(gè)棱柱,如圖,底面為邊長(zhǎng)為的直角三角形,高為的棱柱,所以體積為【點(diǎn)睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎(chǔ)題15.【解析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可.【詳解】,.【點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.16.【解析】
根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)減區(qū)間是,增區(qū)間是;(2),證明見(jiàn)解析.【解析】
(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個(gè)極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時(shí),遞減,當(dāng)時(shí),遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時(shí),所以當(dāng)時(shí),有一個(gè)極值點(diǎn),當(dāng)時(shí),有兩個(gè)極值點(diǎn),當(dāng)時(shí),沒(méi)有極值點(diǎn),綜上因?yàn)槭堑膬蓚€(gè)極值點(diǎn),所以不妨設(shè),得,因?yàn)樵谶f減,且,所以又所以【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設(shè)直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系求得B的坐標(biāo),再寫出MH所在直線方程,求出H的坐標(biāo),由BF⊥HF,解得.由方程組消去y,解得,由,得到,轉(zhuǎn)化為關(guān)于k的不等式,求得k的范圍.【詳解】(Ⅰ)因?yàn)檫^(guò)焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的線段長(zhǎng)為3,所以,因?yàn)闄E圓離心率為,所以,又,解得,,,所以橢圓的方程為;(Ⅱ)設(shè)直線的斜率為,則,設(shè),由得,解得,或,由題意得,從而,由(Ⅰ)知,,設(shè),所以,,因?yàn)椋?,所以,解得,所以直線的方程為,設(shè),由消去,解得,在中,,即,所以,即,解得,或.所以直線的斜率的取值范圍為.【點(diǎn)睛】本題考查在直線與橢圓的位置關(guān)系中由已知條件求直線的斜率取值范圍問(wèn)題,還考查了由離心率求橢圓的標(biāo)準(zhǔn)方程,屬于難題.19.(1)見(jiàn)解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過(guò)坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.20.(Ⅰ)見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進(jìn)而得線面平行;(Ⅱ)過(guò)點(diǎn)作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過(guò)點(diǎn)作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點(diǎn),;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.21.(1)見(jiàn)解析;(2)(i)該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤(rùn)為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤(rùn)為424千元;(3)分布列見(jiàn)解析,.【解析】
(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來(lái)選
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《食品機(jī)械與設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《教育影視賞析》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《家畜育種學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《飯店管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《商業(yè)品牌整體策劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《建筑設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》8
- 沈陽(yáng)理工大學(xué)《化工安全與環(huán)保》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)理工大學(xué)《電力變壓器設(shè)計(jì)》2023-2024學(xué)年期末試卷
- 沈陽(yáng)理工大學(xué)《產(chǎn)品仿生學(xué)應(yīng)用設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 郵儲(chǔ)高級(jí)練習(xí)卷三(第12章-第17章)附有答案
- 重慶市江北區(qū)2023-2024學(xué)年六年級(jí)下學(xué)期期末考試數(shù)學(xué)試題
- 軍隊(duì)文職聘用合同管理規(guī)定
- 2024年貴州省安順市西秀區(qū)小升初語(yǔ)文試卷
- 2024-2029年中國(guó)兒童牙冠行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 新時(shí)代鐵路發(fā)展面對(duì)面全文內(nèi)容
- 人工智能與語(yǔ)文閱讀理解教學(xué)
- 科學(xué)素養(yǎng)培育及提升-知到答案、智慧樹(shù)答案
- 快遞主管崗位職責(zé)
- 醫(yī)療差錯(cuò)、糾紛、事故登記表
- 七年級(jí)第一次期中家長(zhǎng)會(huì)課件
評(píng)論
0/150
提交評(píng)論