版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年山東旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如圖,在平行四邊形OABC中,點C(1,3).
(1)求OC所在直線的斜率;
(2)過點C做CD⊥AB于點D,求CD所在直線的方程.答案:(1)∵點O(0,0),點C(1,3),∴OC所在直線的斜率為kOC=3-01-0=3.(2)在平行四邊形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直線的斜率為kCD=-13.∴CD所在直線方程為y-3=-13(x-1),即x+3y-10=0.2.已知直線l的方程為x=2-4
ty=1+3
t,則直線l的斜率為______.答案:直線x=2-4
ty=1+3
t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.3.用演繹法證明y=x2是增函數(shù)時的大前提是______.答案:∵證明y=x2是增函數(shù)時,依據(jù)的原理就是增函數(shù)的定義,∴用演繹法證明y=x2是增函數(shù)時的大前提是:增函數(shù)的定義故填增函數(shù)的定義4.對于回歸方程y=4.75x+2.57,當(dāng)x=28時,y
的估計值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時,y的估計值是4.75×28+2.57=135.57.故為:135.57.5.已知函數(shù)y=f(x)是R上的奇函數(shù),其零點為x1,x2,…,x2011,則x1+x2+…+x2011=______.答案:∵f(x)是R上的奇函數(shù),∴0是函數(shù)y=f(x)的零點.其他非0的零點關(guān)于原點對稱.∴x1+x2+…+x2011=0.故為:0.6.使關(guān)于的不等式有解的實數(shù)的最大值是(
)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。7.半徑為R的球內(nèi)接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個正方體,設(shè)正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;8.過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M,N兩點,自M,N向準(zhǔn)線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C9.函數(shù)y=ax+b與y=logbx且a>0,在同一坐標(biāo)系內(nèi)的圖象是()A.
B.
C.
D.
答案:∵a>0,則函數(shù)y=ax+b為增函數(shù),與y軸的交點為(0,b)當(dāng)0<b<1時,函數(shù)y=ax+b與y軸的交點在原點和(0,1)點之間,y=logbx為減函數(shù),D圖滿足要求;當(dāng)b>1時,函數(shù)y=ax+b與y軸的交點在(0,1)點上方,y=logbx為增函數(shù),不存在滿足條件的圖象;故選D10.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個年級的學(xué)生中隨機抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A11.過拋物線y2=4x的焦點作直線l交拋物線于A、B兩點,若線段AB中點的橫坐標(biāo)為3,則|AB|等于()A.2B.4C.6D.8答案:由題設(shè)知知線段AB的中點到準(zhǔn)線的距離為4,設(shè)A,B兩點到準(zhǔn)線的距離分別為d1,d2,由拋物線的定義知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故選D.12.點P(4,-2)與圓x2+y2=4上任一點連線的中點軌跡方程是______.答案:設(shè)圓上任意一點為A(x1,y1),AP中點為(x,y),則x=x1+42y=y1-22,∴x1=2x-4y1=2y+2代入x2+y2=4得(2x-4)2+(2y+2)2=4,化簡得(x-2)2+(y+1)2=1.故為:(x-2)2+(y+1)2=113.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.14.下面哪個不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.15.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.16.參數(shù)方程(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C17.下列說法中正確的有()
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個極端值的影響,平均數(shù)受樣本中的每一個數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.正確向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.18.已知F1=i+2j+3k,F(xiàn)2=2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于一物體上,使物體從點M(1,-2,1)移動到N(3,1,2),則合力所作的功是______.答案:由題意可得F1=(1,2,3)F2=(2,3,-1),F(xiàn)3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F?S=6×2+1×3+7×1=22故為:2219.已知F1(-2,0),F(xiàn)2(2,0)兩點,曲線C上的動點P滿足|PF1|+|PF2|
=32|F1F2|.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l經(jīng)過點M(0,3),交曲線C于A,B兩點,且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|
=32|F1F2|
=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點,長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點,則有x129+y125=1,
(1)x229+y225=1,(2)2x1=x2,
(3)2y1=y2+3.
(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因為MA=12MB,所以A為MB的中點,從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.20.要從已編號(1~60)的60枚最新研制的某型導(dǎo)彈中隨機抽取6枚來進(jìn)行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號可能是()
A.5、10、15、20、25、30
B.3、13、23、33、43、53
C.1、2、3、4、5、6
D.2、4、8、16、32、48答案:B21.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C22.某個命題與自然數(shù)n有關(guān),若n=k(k∈N*)時命題成立,那么可推得當(dāng)n=k+1時該命題也成立.現(xiàn)已知當(dāng)n=5時,該命題不成立,那么可推得()
A.當(dāng)n=6時,該命題不成立
B.當(dāng)n=6時,該命題成立
C.當(dāng)n=4時,該命題不成立
D.當(dāng)n=4時,該命題成立答案:C23.已知圓C的圓心為(1,1),半徑為1.直線l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點P的直角坐標(biāo)為(2,2),直線l與圓C交于A,B兩點,求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線l的參數(shù)方程代入并化簡得t2+2(sinθ+cosθ)t+1=0,由直線參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當(dāng)θ=π4時,|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.24.如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O(shè)為圓心的同一個圓上.答案:連接OE,OF,OG,OH.∵四邊形ABCD為菱形,∴AB=BC=CD=DA,且BD⊥AC.∵E、F、GH分別為AB、BC、CD、DA的中點,∴OE=OF=OG=OH=12AB,∴E、F、G、H四點在以O(shè)為圓心,12AB為半徑的圓上.25.若O(0,0),A(1,2)且OA′=2OA.則A′點坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.26.若圓錐的側(cè)面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側(cè)面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.27.在空間直角坐標(biāo)系中,點,過點P作平面xOy的垂線PQ,則Q的坐標(biāo)為()
A.
B.
C.
D.答案:D28.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C29.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標(biāo)為
______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標(biāo)是(0,0,149)故為:(0,0,149)30.某公司的管理機構(gòu)設(shè)置是:設(shè)總經(jīng)理一個,副總經(jīng)理兩個,直接對總經(jīng)理負(fù)責(zé),下設(shè)有6個部門,其中副總經(jīng)理A管理生產(chǎn)部、安全部和質(zhì)量部,副總經(jīng)理B管理銷售部、財務(wù)部和保衛(wèi)部.請根據(jù)以上信息補充該公司的人事結(jié)構(gòu)圖,其中①、②處應(yīng)分別填()
A.保衛(wèi)部,安全部
B.安全部,保衛(wèi)部
C.質(zhì)檢中心,保衛(wèi)部
D.安全部,質(zhì)檢中心
答案:B31.設(shè)有三個命題:“①0<12<1.②函數(shù)f(x)=log
12x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log
12x是減函數(shù).其“小前提”是①.故為:①.32.已知z=1+i,則|z|=______.答案:由z=1+i,所以|z|=12+12=2.故為2.33.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1534.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質(zhì),得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|
=1故為:135.
已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B36.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為______.答案:因為向量b與a=(2,-1,2)共線,所以設(shè)b=ma,因為且a?b=-18,所以ma2=-18,因為|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).37.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a38.已知某離散型隨機變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1339.下列關(guān)于算法的說法中正確的個數(shù)是()
①求解某一類問題的算法是唯一的;
②算法必須在有限步操作之后停止;
③算法的每一步操作必須是明確的,不能有歧義或模糊;
④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個數(shù)是3.故選C.40.四個森林防火觀察站A,B,C,D的坐標(biāo)依次為(5,0),(-5,0),(0,5),(0,-5),他們都發(fā)現(xiàn)某一地區(qū)有火訊.若A,B觀察到的距離相差為6,且離A近,C,D觀察到的距離相差也為6,且離C近.試求火訊點的坐標(biāo).答案:設(shè)火訊點的坐標(biāo)P(x,y),由于觀察到的距離相差為6,點P在雙曲線上,由于離A近,所以點P在雙曲線x29-y216=1(x≥3)上;由于離C近,所以點P在雙曲線Y29-X216=1(Y≥3)上;由這兩個方程解得:x=1277y=1277答:火訊點的坐標(biāo)為:(1277,1277).41.將包含甲、乙兩人的4位同學(xué)平均分成2個小組參加某項公益活動,則甲、乙兩名同學(xué)分在同一小組的概率為()
A.
B.
C.
D.答案:C42.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點對稱,既[a,b]關(guān)于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.43.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.
x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:344.在航天員進(jìn)行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實施時必須相鄰,請問實驗順序的編排方法共有()
A.24種
B.48種
C.96種
D.144種答案:C45.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D46.由數(shù)字0、1、2、3、4可組成不同的三位數(shù)的個數(shù)是()
A.100
B.125
C.64
D.80答案:A47.(選做題)圓內(nèi)非直徑的兩條弦AB、CD相交于圓內(nèi)一點P,已知PA=PB=4,PC=14PD,則CD=______.答案:連接AC、BD.∵∠A=∠D,∠C=∠B,∴△ACP∽△DBP,∴PAPD=PCPB,∴4PD=14PD4,∴PD2=64∴PD=8∴CD=PD+PC=8+2=10,故為:1048.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B49.設(shè)a=log
132,b=log123,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:c=(12)0.3>0,a=log
132<0,b=log123
<0并且log
132>log133,log
133>log123所以c>a>b故選D.50.方程x2+ky2=2表示焦點在y軸的橢圓,那么實數(shù)k的取值范圍是
______.答案:橢圓方程化為x22+y22k=1.焦點在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<1第2卷一.綜合題(共50題)1.已知G是△ABC的重心,O是平面ABC外的一點,若λOG=OA+OB+OC,則λ=______.答案:如圖,正方體中,OA+OB+OC=OD=3OG,∴λ=3.故為3.2.一個算法的流程圖如圖所示,則輸出S的值為
.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.3.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B4.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.5.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大小;
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)6.已知直線l1:3x-y+2=0,l2:3x+3y-5=0,則直線l1與l2的夾角是______.答案:因為直線l1的斜率為3,故傾斜角為60°,直線l2的斜率為-3,傾斜角為120°,故兩直線的夾角為60°,即兩直線的夾角為π3,故為
π3.7.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C8.O、B、C為空間四個點,又、、為空間的一個基底,則()
A.O、A、B、C四點不共線
B.O、A、B、C四點共面,但不共線
C.O、A、B、C四點中任意三點不共線
D.O、A、B、C四點不共面答案:D9.已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合1,2,3,其定義如下表:
表1:
x123f(x)231表2:
x123g(x)321則方程g[f(x)]=x的解集為______.答案:由題意得,當(dāng)x=1時,g[f(1)]=g[2]=2不滿足方程;當(dāng)x=2時,g[f(2)]=g[3]=1不滿足方程;x=3,g[f(3)]=g[1]=3滿足方程,是方程的解.故為:{3}10.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D11.在平面直角坐標(biāo)系xOy中,設(shè)F1(-4,0),F(xiàn)2(4,0),方程x225+y29=1的曲線為C,關(guān)于曲線C有下列命題:
①曲線C是以F1、F2為焦點的橢圓的一部分;
②曲線C關(guān)于x軸、y軸、坐標(biāo)原點O對稱;
③若P是上任意一點,則PF1+PF2≤10;
④若P是上任意一點,則PF1+PF2≥10;
⑤曲線C圍成圖形的面積為30.
其中真命題的序號是______.答案:∵x225+y29=1即為|x|5+|y|3=1表示四條線段,如圖故①④錯,②③對對于⑤,圖形的面積為3×52×4=30,故⑤對.故為②③⑤12.下表是x與y之間的一組數(shù)據(jù),則y關(guān)于x的線性回歸方程
必過點()
x
0
1
2
3
y
1
3
5
7
A.(2,2)
B.(1.5,2)
C.(1,2)
D.(1.5,4)答案:D13.在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個紅球的事件包括C22+C21C31=7個基本事件,根據(jù)古典概型公式得到P=710,故為:710.14.過拋物線y2=2px(p>0)的焦點F的直線與拋物線相交于M,N兩點,自M,N向準(zhǔn)線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C15.求證:若圓內(nèi)接四邊形的兩條對角線互相垂直,則從對角線交點到一邊中點的線段長等于圓心到該邊對邊的距離.答案:以兩條對角線的交點為原點O、對角線所在直線為坐標(biāo)軸建立直角坐標(biāo)系,(如圖所示)
設(shè)A(-a,0),B(0,-b),C(c,0),D(0,d),則CD的中點E(c2,d2),AB的中點H(-a2,-b2).又圓心G到四個頂點的距離相等,故圓心G的橫坐標(biāo)等于AC中點的橫坐標(biāo),等于c-a2,圓心G的縱坐標(biāo)等于BD中點的縱坐標(biāo),等于d-b2.即圓心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要證的結(jié)論成立.16.已知向量a=(3,4),b=(8,6),c=(2,k),其中k為常數(shù),如果<a,c>=<b,c>,則k=______.答案:由題意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故為2.17.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因為A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故選D18.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時,由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負(fù)根時,-1≤a≤178故為:-1≤a≤17819.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設(shè)每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.20.如圖所示,正方體的棱長為1,點A是其一棱的中點,則點A在空間直角坐標(biāo)系中的坐標(biāo)是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B21.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.22.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設(shè)所求直線上任意一點P(x,y),由題意可得點P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.23.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.
求:
(1)d的變化范圍;
(2)當(dāng)d取最大值時兩條直線的方程.答案:(1)方法一:①當(dāng)兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當(dāng)兩條直線的斜率存在時,設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當(dāng)d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)24.在極坐標(biāo)系中,曲線ρ=4cosθ圍成的圖形面積為()
A.π
B.4
C.4π
D.16答案:C25.命題“梯形的兩對角線互相不平分”的命題形式為()A.p或qB.p且qC.非pD.簡單命題答案:記命題p:梯形的兩對角線互相平分,
而原命題是“梯形的兩對角線互相不平分”,是命題p的否定形式
故選C26.用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上()
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案:D27.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時,a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個向量數(shù)量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B28.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點,連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點共圓∴∠EFC=∠D=α∴∠DEB=α故為:α29.向量a=i+
2j在向量b=3i+4j上的投影是______.答案:根據(jù)投影的定義可得:a在b方向上的投影為:|a|cos<a,b>=a?b|b|=1×3+2×452=115.故為:115.30.兩封信隨機投入A、B、C三個空郵箱,則A郵箱的信件數(shù)ξ的數(shù)學(xué)期望Eξ=______;答案:由題意知ξ的取值有0,1,2,當(dāng)ξ=0時,即A郵箱的信件數(shù)為0,由分步計數(shù)原理知兩封信隨機投入A、B、C三個空郵箱,共有3×3種結(jié)果,而滿足條件的A郵箱的信件數(shù)為0的結(jié)果數(shù)是2×2,由古典概型公式得到ξ=0時的概率,同理可得ξ=1時,ξ=2時,ξ=3時的概率p(ξ=0)=2×29=49,p(ξ=1)=C12C129=49,p(ξ=2)=19,∴Eξ=0×49+1×49+2×19=23故為:23.31.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設(shè)傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.32.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪?。33.當(dāng)x∈N+時,用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當(dāng)x∈N+時,(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.34.已知f(x)=2x2+1,則函數(shù)f(cosx)的單調(diào)減區(qū)間為______.答案:解;∵f(x)=2x2+1,∴f(cosx)=2cos2x+1=1+cos2x+1=cos2x+2,令2kπ≤2x≤2kπ+π,k∈Z.解得kπ≤x≤kπ+π2,k∈Z.∴函數(shù)f(cosx)的單調(diào)減區(qū)間為[kπ,π2+kπ],k∈Z.故為:[kπ,π2+kπ],k∈Z.35.設(shè)曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設(shè)是關(guān)于點A的對稱點,則有,,代入曲線C的方程,得關(guān)于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關(guān)于點A的對稱點在曲線C上,因此,曲線C與C1關(guān)于點A對稱.36.用秦九韶算法求多項式f(x)=8x7+5x6+3x4+2x+1,當(dāng)x=2時的值.答案:根據(jù)秦九韶算法,把多項式改寫成如下形式f(x)=8x7+5x6+0?x5+3?x4+0?x3+0?x2+2x+1=((((((8x+5)x+0)x+3)x+0)x+0)x+2)x+1v0=8,v1=8×2+5=21v2=21×2+0=42,v3=42×2+3=87v4=87×2+0=174,v5=174×2+0=348v6=348×2+2=698,v7=698×2+1=1397.∴當(dāng)x=2時,多項式的值為1397.37.已知A(1,0).B(7,8),若點A和點B到直線l的距離都為5,且滿足上述條件的直線l共有n條,則n的值是()A.1B.2C.3D.4答案:與直線AB平行且到直線l的距離都為5的直線共有兩條,分別位于直線AB的兩側(cè),由線段AB的長度等于10,還有一條直線是線段AB的中垂線,故滿足上述條件的直線l共有3條,故選C.38.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設(shè)點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)
分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.39.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a(chǎn),b,c,d中的最大值B.a(chǎn),b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數(shù),故選A.40.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()
A.2
B.6
C.4
D.12答案:C41.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點,OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點)上存在與AB'平行的切線,所以λ∈(12,2).故選C.42.一支田徑隊有男運動員112人,女運動員84人,用分層抽樣的方法從全體男運動員中抽出了32人,則應(yīng)該從女運動員中抽出的人數(shù)為()
A.12
B.13
C.24
D.28答案:C43.設(shè)集合A={0,1,3},B={1,3,4},則A∩B=______.答案:∵集合A={0,1,3},B={1,3,4},A∩B={1,3}.故為:{1,3}.44.如圖:一個力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.45.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.46.參數(shù)方程中當(dāng)t為參數(shù)時,化為普通方程為(
)。答案:x2-y2=147.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C48.在下列各圖中,每個圖的兩個變量具有線性相關(guān)關(guān)系的圖是()
A.(1)(2)
B.(1)(3)
C.(2)(4)
D.(2)(3)答案:D49.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()
A.
B.
C.
D.
答案:A50.設(shè)a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.
(1)求b和c;
(2)求c在a方向上的射影;
(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d
)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|
|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.第3卷一.綜合題(共50題)1.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C2.命題:“如果ab=0,那么a、b中至少有一個等于0.”的逆否命題為______
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠03.極坐標(biāo)方程pcosθ=表示()
A.一條平行于x軸的直線
B.一條垂直于x軸的直線
C.一個圓
D.一條拋物線答案:B4.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B5.若log
23(x-2)≥0,則x的范圍是______.答案:由log
23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].6.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設(shè)點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.
(1)試用向量方法證明E、F、G、H四點共面;
(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)
分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,
=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)
由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵M(jìn)N平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.7.以雙曲線x24-y216=1的右焦點為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.8.對于任意空間四邊形,試證明它的一組對邊中點的連線與另一組對邊可平行于同一平面.答案:證明:如圖所示,空間四邊形ABCD,E、F分別為AB、CD的中點,利用多邊形加法法則可得①又E、F分別是AB、CD的中點,故有②將②代入①后,兩式相加得即與共面,∴EF與AD、BC可平行于同一平面.9.甲乙兩人在罰球線投球命中的概率為,甲乙兩人在罰球線上各投球一次,則恰好兩人都中的概率為()
A.
B.
C.
D.答案:A10.過點(-1,3)且平行于直線x-2y+3=0的直線方程為()
A.x-2y+7=0
B.2x+y-1=0
C.x-2y-5=0
D.2x+y-5=0答案:A11.種植兩株不同的花卉,它們的存活率分別為p和q,則恰有一株存活的概率為(
)A.p+q-2pqB.p+q-pqC.p+qD.pq答案:A解析:恰有一株存活的概率為p(1-q)+(1-p)q=p+q-2pq。12.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實數(shù)b的取值范圍為b>9;故為:b>9.13.下列命題錯誤的是(
)A.命題“若,則中至少有一個為零”的否定是:“若,則都不為零”。B.對于命題,使得;則是,均有。C.命題“若,則方程有實根”的逆否命題為:“若方程無實根,則”。D.“”是“”的充分不必要條件。答案:A解析:命題的否定是只否定結(jié)論,∴選A.14.若f(x)=x2,則對任意實數(shù)x1,x2,下列不等式總成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A15.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()
A.0
B.
C.
D.答案:B16.一個類似于細(xì)胞分裂的物體,一次分裂為二,兩次分裂為四,如此繼續(xù)分裂有限多次,而隨機終止.設(shè)分裂n次終止的概率是(n=1,2,3,…).記X為原物體在分裂終止后所生成的子塊數(shù)目,則P(X≤10)=()
A.
B.
C.
D.以上均不對答案:A17.求過點A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|
k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.18.直線(t為參數(shù))被圓x2+y2=9截得的弦長為()
A.
B.
C.
D.答案:B19.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.20.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點,DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)21.已知直線l經(jīng)過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截得的線段的中點M在直線x+y-3=0上.求直線l的方程.答案:∵點M在直線x+y-3=0上,∴設(shè)點M坐標(biāo)為(t,3-t),則點M到l1、l2的距離相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l過點A(2,4),即5x-y-6=0,故直線l的方程為5x-y-6=0.22.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點,并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C23.(不等式選講選做題)
已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時取等號,所以ax+by的最大值為3.故為:3.24.已知某車間加工零件的個數(shù)x與所花費時間y(h)之間的線性回歸方程為=0.01x+0.5,則加工600個零件大約需要的時間為()
A.6.5h
B.5.5h
C.3.5h
D.0.3h答案:A25.有5組(x,y)的統(tǒng)計數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C26.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個動點,則S=x+y的最大值是()
A.1
B.2
C.3
D.4答案:B27.設(shè),則之間的大小關(guān)系是
.答案:b>a>c解析:略28.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是(
)
A.
B.
C.
D.答案:B29.已知正數(shù)x,y,z滿足5x+4y+3z=10.
(1)求證:25x
24y+3z+16y23z+5x+9z25x+4y≥5;
(2)求9x2+9y2+z2的最小值.答案:(1)根據(jù)柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)][25x24y+3z+16y23z+5x+9z25x+4y]≥(5x+4y+3z)2因為5x+4y+3z=10,所以25x24y+3z+16y23z+5x+9z25x+4y≥10220=5.(2)根據(jù)均值不等式,得9x2+9y2+z2≥29x2?9y2+z2=2?3x2+y2+z2,當(dāng)且僅當(dāng)x2=y2+z2時,等號成立.根據(jù)柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即
(x2+y2+z2)≥2,當(dāng)且僅當(dāng)x5=y4=z3時,等號成立.綜上,9x2+9y2+z2≥2?32=18.30.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.31.書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數(shù)學(xué)書,4本物理書,5本化學(xué)書,∴從中任取一本,不同的取法有5+4+5=14種故選A.32.(上海卷理3文8)動點P到點F(2,0)的距離與它到直線x+2=0的距離相等,則P的軌跡方程為______.答案:由拋物線的定義知點P的軌跡是以F為焦點的拋物線,其開口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x33.已知A(4,1,3)、B(2,-5,1),C為線段AB上一點,且則C的坐標(biāo)為()
A.
B.
C.
D.答案:C34.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《保險金融行業(yè)模板》課件
- 《認(rèn)識計算機軟》課件
- 干酪性鼻炎的健康宣教
- 創(chuàng)傷性肩關(guān)節(jié)前脫位的健康宣教
- 《Java程序設(shè)計及移動APP開發(fā)》課件-第04章
- 陰吹的健康宣教
- 刺胞皮炎的臨床護(hù)理
- 糖代謝紊亂的臨床護(hù)理
- 孕期牙齒松動的健康宣教
- 汗腺瘤的臨床護(hù)理
- 鑄牢中華民族共同體意識-形考任務(wù)3-國開(NMG)-參考資料
- 《心理健康教育主題班會》主題
- 《義務(wù)教育語文課程標(biāo)準(zhǔn)》2022年修訂版原版
- GB 30254-2024高壓三相籠型異步電動機能效限定值及能效等級
- 平面構(gòu)成(普通高等院校藝術(shù)設(shè)計專業(yè))全套教學(xué)課件
- 完美著裝智慧樹知到期末考試答案章節(jié)答案2024年武漢紡織大學(xué)
- 學(xué)術(shù)交流英語(學(xué)術(shù)寫作)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱工程大學(xué)
- (2024年)全新誠信考試課件
- 國家開放大學(xué)《高等數(shù)學(xué)基礎(chǔ)》形考任務(wù) 1-4 參考答案
- 2024年四川省普通高中學(xué)業(yè)水平考試(思想政治樣題)
- 高等數(shù)理統(tǒng)計知到章節(jié)答案智慧樹2023年浙江大學(xué)
評論
0/150
提交評論